IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i4d10.1007_s00180-023-01358-0.html
   My bibliography  Save this article

Target-aware Bayesian inference via generalized thermodynamic integration

Author

Listed:
  • F. Llorente

    (Universidad Carlos III de Madrid)

  • L. Martino

    (Universidad Rey Juan Carlos)

  • D. Delgado

    (Universidad Carlos III de Madrid)

Abstract

In Bayesian inference, we are usually interested in the numerical approximation of integrals that are posterior expectations or marginal likelihoods (a.k.a., Bayesian evidence). In this paper, we focus on the computation of the posterior expectation of a function $$f(\textbf{x})$$ f ( x ) . We consider a target-aware scenario where $$f(\textbf{x})$$ f ( x ) is known in advance and can be exploited in order to improve the estimation of the posterior expectation. In this scenario, this task can be reduced to perform several independent marginal likelihood estimation tasks. The idea of using a path of tempered posterior distributions has been widely applied in the literature for the computation of marginal likelihoods. Thermodynamic integration, path sampling and annealing importance sampling are well-known examples of algorithms belonging to this family of methods. In this work, we introduce a generalized thermodynamic integration (GTI) scheme which is able to perform a target-aware Bayesian inference, i.e., GTI can approximate the posterior expectation of a given function. Several scenarios of application of GTI are discussed and different numerical simulations are provided.

Suggested Citation

  • F. Llorente & L. Martino & D. Delgado, 2023. "Target-aware Bayesian inference via generalized thermodynamic integration," Computational Statistics, Springer, vol. 38(4), pages 2097-2119, December.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-023-01358-0
    DOI: 10.1007/s00180-023-01358-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01358-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01358-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luca Martino & Fernando Llorente & Ernesto Curbelo & Javier López-Santiago & Joaquín Míguez, 2021. "Automatic Tempered Posterior Distributions for Bayesian Inversion Problems," Mathematics, MDPI, vol. 9(7), pages 1-17, April.
    2. Llorente Fernández, Fernando & Martino, Luca & Elvira Arregui, Víctor & Delgado Gómez, David & López Santiago, Javier, 2020. "Adaptive quadrature schemes for Bayesian inference via active learning," DES - Working Papers. Statistics and Econometrics. WS 30537, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Chris J. Oates & Theodore Papamarkou & Mark Girolami, 2016. "The Controlled Thermodynamic Integral for Bayesian Model Evidence Evaluation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 634-645, April.
    4. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
    5. Luca Martino & Jesse Read, 2013. "On the flexibility of the design of multiple try Metropolis schemes," Computational Statistics, Springer, vol. 28(6), pages 2797-2823, December.
    6. Nial Friel & Jason Wyse, 2012. "Estimating the evidence – a review," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 288-308, August.
    7. Calderhead, Ben & Girolami, Mark, 2009. "Estimating Bayes factors via thermodynamic integration and population MCMC," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4028-4045, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Grzegorczyk & Andrej Aderhold & Dirk Husmeier, 2017. "Targeting Bayes factors with direct-path non-equilibrium thermodynamic integration," Computational Statistics, Springer, vol. 32(2), pages 717-761, June.
    2. Chris J. Oates & Mark Girolami & Nicolas Chopin, 2017. "Control functionals for Monte Carlo integration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 695-718, June.
    3. Mathias Drton & Martyn Plummer, 2017. "A Bayesian information criterion for singular models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 323-380, March.
    4. Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
    5. Will Penny & Biswa Sengupta, 2016. "Annealed Importance Sampling for Neural Mass Models," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-25, March.
    6. Spezia, Luigi, 2020. "Bayesian variable selection in non-homogeneous hidden Markov models through an evolutionary Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    7. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    8. Luigi Spezia & Andy Vinten & Roberta Paroli & Marc Stutter, 2021. "An evolutionary Monte Carlo method for the analysis of turbidity high‐frequency time series through Markov switching autoregressive models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    9. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    10. Heaps, Sarah E. & Boys, Richard J. & Farrow, Malcolm, 2014. "Computation of marginal likelihoods with data-dependent support for latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 392-401.
    11. Perrakis, Konstantinos & Ntzoufras, Ioannis & Tsionas, Efthymios G., 2014. "On the use of marginal posteriors in marginal likelihood estimation via importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 54-69.
    12. Loza-Reyes, E. & Hurn, M.A. & Robinson, A., 2014. "Classification of molecular sequence data using Bayesian phylogenetic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 81-95.
    13. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    14. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    15. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
    16. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    17. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    18. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    19. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    20. Christian Aßmann & Jens Boysen-Hogrefe & Markus Pape, 2024. "Post-processing for Bayesian analysis of reduced rank regression models with orthonormality restrictions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 577-609, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-023-01358-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.