IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i3p1373-1386.html
   My bibliography  Save this article

Predicting unobserved links in incompletely observed networks

Author

Listed:
  • Marchette, David J.
  • Priebe, Carey E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Marchette, David J. & Priebe, Carey E., 2008. "Predicting unobserved links in incompletely observed networks," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1373-1386, January.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:3:p:1373-1386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00119-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    2. Peter D. Hoff, 2005. "Bilinear Mixed-Effects Models for Dyadic Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 286-295, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Jacques Daudin & Laurent Pierre & Corinne Vacher, 2010. "Model for Heterogeneous Random Networks Using Continuous Latent Variables and an Application to a Tree–Fungus Network," Biometrics, The International Biometric Society, vol. 66(4), pages 1043-1051, December.
    2. Castro, Luis E. & Shaikh, Nazrul I., 2018. "A particle-learning-based approach to estimate the influence matrix of online social networks," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 1-18.
    3. Matteo Cinelli & Giovanna Ferraro & Antonio Iovanella & Giulia Rotundo, 2021. "Assessing the impact of incomplete information on the resilience of financial networks," Annals of Operations Research, Springer, vol. 299(1), pages 721-745, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    2. Xiao-Li Meng, 2016. "Discussion: Should a Working Model Actually Work?," International Statistical Review, International Statistical Institute, vol. 84(3), pages 362-367, December.
    3. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    5. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    6. Eric A. Vance & Elizabeth A. Archie & Cynthia J. Moss, 2009. "Social networks in African elephants," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 273-293, December.
    7. repec:hal:wpspec:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    8. Mark S. Handcock, 2017. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1537-1539, October.
    9. Montes-Rojas Gabriel, 2022. "Subgraph Network Random Effects Error Components Models: Specification and Testing," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 17-34, January.
    10. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    11. Yingda Lu & Kinshuk Jerath & Param Vir Singh, 2013. "The Emergence of Opinion Leaders in a Networked Online Community: A Dyadic Model with Time Dynamics and a Heuristic for Fast Estimation," Management Science, INFORMS, vol. 59(8), pages 1783-1799, August.
    12. Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    13. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    14. Tyler H. McCormick & Tian Zheng, 2015. "Latent Surface Models for Networks Using Aggregated Relational Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1684-1695, December.
    15. Patacchini, Eleonora & Hsieh, Chih-Sheng & Lin, Xu, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    16. Amanda M. Y. Chu & Thomas W. C. Chan & Mike K. P. So & Wing-Keung Wong, 2021. "Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model," IJERPH, MDPI, vol. 18(6), pages 1-22, March.
    17. Peter D. Hoff, 2009. "Multiplicative latent factor models for description and prediction of social networks," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 261-272, December.
    18. Dass, Mayukh & Fox, Gavin L., 2011. "A holistic network model for supply chain analysis," International Journal of Production Economics, Elsevier, vol. 131(2), pages 587-594, June.
    19. Daniele Durante & David B. Dunson & Joshua T. Vogelstein, 2017. "Nonparametric Bayes Modeling of Populations of Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1516-1530, October.
    20. Finn, J.T. & Brownscombe, J.W. & Haak, C.R. & Cooke, S.J. & Cormier, R. & Gagne, T. & Danylchuk, A.J., 2014. "Applying network methods to acoustic telemetry data: Modeling the movements of tropical marine fishes," Ecological Modelling, Elsevier, vol. 293(C), pages 139-149.
    21. ter Braak, Cajo J.F. & Kourmpetis, Yiannis & Kiers, Henk A.L. & Bink, Marco C.A.M., 2009. "Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3183-3193, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:3:p:1373-1386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.