Robust learning from bites for data mining
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- David J. Hand & Heikki Mannila & Padhraic Smyth, 2001. "Principles of Data Mining," MIT Press Books, The MIT Press, edition 1, volume 1, number 026208290x, December.
- Andreas Christmann & Paul Fischer & Thorsten Joachims, 2002. "Comparison between various regression depth methods and the support vector machine to approximate the minimum number of misclassifications," Computational Statistics, Springer, vol. 17(2), pages 273-287, July.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Christmann, Andreas & Steinwart, Ingo, 2005. "Consistency and robustness of kernel based regression," Technical Reports 2005,01, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Willems, Gert & Van Aelst, Stefan, 2005. "Fast and robust bootstrap for LTS," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 703-715, April.
- Christophe Croux & Stefan Aelst & Catherine Dehon, 2003. "Bounded influence regression using high breakdown scatter matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 265-285, June.
- Bartlett, Peter L. & Jordan, Michael I. & McAuliffe, Jon D., 2006. "Convexity, Classification, and Risk Bounds," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 138-156, March.
- Van Aelst, Stefan & Rousseeuw, Peter J. & Hubert, Mia & Struyf, Anja, 2002. "The Deepest Regression Method," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 138-166, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Granell, Ramon & Axon, Colin J. & Wallom, David C.H., 2014. "Predicting winning and losing businesses when changing electricity tariffs," Applied Energy, Elsevier, vol. 133(C), pages 298-307.
- Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
- Sokbae Lee & Serena Ng, 2020.
"An Econometric Perspective on Algorithmic Subsampling,"
Annual Review of Economics, Annual Reviews, vol. 12(1), pages 45-80, August.
- Sokbae Lee & Serena Ng, 2019. "An Econometric Perspective on Algorithmic Subsampling," Papers 1907.01954, arXiv.org, revised Apr 2020.
- Sokbae (Simon) Lee & Serena Ng, 2020. "An econometric perspective on algorithmic subsampling," CeMMAP working papers CWP18/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2006. "Robust Learning from Bites for Data Mining," Technical Reports 2006,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Marcin Chlebus & Zuzanna Osika, 2020. "Comparison of tree-based models performance in prediction of marketing campaign results using Explainable Artificial Intelligence tools," Working Papers 2020-15, Faculty of Economic Sciences, University of Warsaw.
- Silvia Figini & Roberto Savona & Marika Vezzoli, 2016. "Corporate Default Prediction Model Averaging: A Normative Linear Pooling Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(1-2), pages 6-20, January.
- Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
- Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
- Peiró-Signes, Ángel & Segarra-Oña, Marival & Trull-Domínguez, Óscar & Sánchez-Planelles, Joaquín, 2022. "Exposing the ideal combination of endogenous–exogenous drivers for companies’ ecoinnovative orientation: Results from machine-learning methods," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
- Richard Berk, 2019. "Accuracy and Fairness for Juvenile Justice Risk Assessments," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 16(1), pages 175-194, March.
- Robert Suchting & Michael S. Businelle & Stephen W. Hwang & Nikhil S. Padhye & Yijiong Yang & Diane M. Santa Maria, 2020. "Predicting Daily Sheltering Arrangements among Youth Experiencing Homelessness Using Diary Measurements Collected by Ecological Momentary Assessment," IJERPH, MDPI, vol. 17(18), pages 1-17, September.
- Steffen Borgwardt & Rafael M. Frongillo, 2019. "Power Diagram Detection with Applications to Information Elicitation," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 184-196, April.
- Stephan Morgenthaler, 2007. "A survey of robust statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 271-293, February.
- Müller, Daniel & Leitão, Pedro J. & Sikor, Thomas, 2013. "Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees," Agricultural Systems, Elsevier, vol. 117(C), pages 66-77.
- Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
- Yijun Zuo, 2020. "Depth Induced Regression Medians and Uniqueness," Stats, MDPI, vol. 3(2), pages 1-13, April.
- Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
- Somodi, Imelda & Bede-Fazekas, Ákos & Botta-Dukát, Zoltán & Molnár, Zsolt, 2024. "Confidence and consistency in discrimination: A new family of evaluation metrics for potential distribution models," Ecological Modelling, Elsevier, vol. 491(C).
- María Jesús Segovia‐Vargas & I. Marta Miranda‐García & Freddy Alejandro Oquendo‐Torres, 2023. "Sustainable finance: The role of savings and credit cooperatives in Ecuador," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 94(3), pages 951-980, September.
- Yuehan Ai & Fan He & Emma Lancaster & Jiyoung Lee, 2022. "Application of machine learning for multi-community COVID-19 outbreak predictions with wastewater surveillance," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-12, November.
- Tesfamariam Engida Mengesha & Lulseged Tamene Desta & Paolo Gamba & Getachew Tesfaye Ayehu, 2024. "Multi-Temporal Passive and Active Remote Sensing for Agricultural Mapping and Acreage Estimation in Context of Small Farm Holds in Ethiopia," Land, MDPI, vol. 13(3), pages 1-29, March.
- Steinwart, Ingo & Hush, Don & Scovel, Clint, 2009. "Learning from dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 175-194, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2007:i:1:p:347-361. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v52y2007i1p347-361.html