IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v176y2022ics0167947322001384.html
   My bibliography  Save this article

Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysis

Author

Listed:
  • Raices Cruz, Ivette
  • Lindström, Johan
  • Troffaes, Matthias C.M.
  • Sahlin, Ullrika

Abstract

Bayesian inference under a set of priors, called robust Bayesian analysis, allows for estimation of parameters within a model and quantification of epistemic uncertainty in quantities of interest by bounded (or imprecise) probability. Iterative importance sampling can be used to estimate bounds on the quantity of interest by optimizing over the set of priors. A method for iterative importance sampling when the robust Bayesian inference relies on Markov chain Monte Carlo (MCMC) sampling is proposed. To accommodate the MCMC sampling in iterative importance sampling, a new expression for the effective sample size of the importance sampling is derived, which accounts for the correlation in the MCMC samples. To illustrate the proposed method for robust Bayesian analysis, iterative importance sampling with MCMC sampling is applied to estimate the lower bound of the overall effect in a previously published meta-analysis with a random effects model. The performance of the method compared to a grid search method and under different degrees of prior-data conflict is also explored.

Suggested Citation

  • Raices Cruz, Ivette & Lindström, Johan & Troffaes, Matthias C.M. & Sahlin, Ullrika, 2022. "Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysis," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001384
    DOI: 10.1016/j.csda.2022.107558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322001384
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    2. Bhattacharya, Sourabh, 2008. "Consistent estimation of the accuracy of importance sampling using regenerative simulation," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2522-2527, October.
    3. John Paul Gosling, 2018. "SHELF: The Sheffield Elicitation Framework," International Series in Operations Research & Management Science, in: Luis C. Dias & Alec Morton & John Quigley (ed.), Elicitation, chapter 0, pages 61-93, Springer.
    4. Nash, John C. & Varadhan, Ravi, 2011. "Unifying Optimization Algorithms to Aid Software System Users: optimx for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radi Romansky, 2022. "Stochastic Approach to Investigate Protected Access to Information Resources in Combined E-Learning Environment," Mathematics, MDPI, vol. 10(16), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hancock, Joana & Vieira, Sara & Lima, Hipólito & Schmitt, Vanessa & Pereira, Jaconias & Rebelo, Rui & Girondot, Marc, 2019. "Overcoming field monitoring restraints in estimating marine turtle internesting period by modelling individual nesting behaviour using capture-mark-recapture data," Ecological Modelling, Elsevier, vol. 402(C), pages 76-84.
    2. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
    3. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    4. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    5. Arzum Akkaş & Nachiketa Sahoo, 2020. "Reducing Product Expiration by Aligning Salesforce Incentives: A Data‐driven Approach," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1992-2009, August.
    6. Zong, Weiyan & Zhang, Junyi & Yang, Xiaoguang, 2023. "Building a life-course intertemporal discrete choice model to analyze migration biographies," Journal of choice modelling, Elsevier, vol. 47(C).
    7. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    8. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    9. Fritsch, Markus & Pua, Andrew Adrian Yu & Schnurbus, Joachim, 2019. "Pdynmc - An R-package for estimating linear dynamic panel data models based on linear and nonlinear moment conditions," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-39-19, University of Passau, Faculty of Business and Economics.
    10. repec:rri:wpaper:201301 is not listed on IDEAS
    11. Gong Chen & Hartmut Fricke & Ostap Okhrin & Judith Rosenow, 2022. "Importance of Weather Conditions in a Flight Corridor," Stats, MDPI, vol. 5(1), pages 1-27, March.
    12. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    13. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence and asymmetric responses between coffee varieties," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 17(2), June.
    14. Cameron J. Williams & Kevin J. Wilson & Nina Wilson, 2021. "A comparison of prior elicitation aggregation using the classical method and SHELF," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 920-940, July.
    15. Michal Engelman & Christopher L. Seplaki & Ravi Varadhan, 2017. "A Quiescent Phase in Human Mortality? Exploring the Ages of Least Vulnerability," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1097-1118, June.
    16. Baty, Florent & Ritz, Christian & Charles, Sandrine & Brutsche, Martin & Flandrois, Jean-Pierre & Delignette-Muller, Marie-Laure, 2015. "A Toolbox for Nonlinear Regression in R: The Package nlstools," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i05).
    17. Herrera, Rodrigo & Schipp, Bernhard, 2014. "Statistics of extreme events in risk management: The impact of the subprime and global financial crisis on the German stock market," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 218-238.
    18. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    19. Faustino Prieto & José María Sarabia & Enrique Calderín-Ojeda, 2021. "The nonlinear distribution of employment across municipalities," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 287-307, April.
    20. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    21. Christoph Werner & Tim Bedford & John Quigley, 2018. "Sequential Refined Partitioning for Probabilistic Dependence Assessment," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2683-2702, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.