IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v103y2016icp229-241.html
   My bibliography  Save this article

Functional regression approximate Bayesian computation for Gaussian process density estimation

Author

Listed:
  • Rodrigues, G.S.
  • Nott, David J.
  • Sisson, S.A.

Abstract

A novel Bayesian nonparametric method is proposed for hierarchical modelling on a set of related density functions, where grouped data in the form of samples from each density function are available. Borrowing strength across the groups is a major challenge in this context. To address this problem, a hierarchically structured prior, defined over a set of univariate density functions using convenient transformations of Gaussian processes, is introduced. Inference is performed through approximate Bayesian computation (ABC) via a novel functional regression adjustment. The performance of the proposed method is illustrated via simulation studies and an analysis of rural high school exam performance in Brazil.

Suggested Citation

  • Rodrigues, G.S. & Nott, David J. & Sisson, S.A., 2016. "Functional regression approximate Bayesian computation for Gaussian process density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 229-241.
  • Handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:229-241
    DOI: 10.1016/j.csda.2016.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301116
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    2. Gery Geenens & Arthur Charpentier & Davy Paindaveine, 2014. "Probit Transformation for Nonparametric Kernel Estimation of the Copula Density," Working Papers ECARES ECARES 2014-23, ULB -- Universite Libre de Bruxelles.
    3. Jara, Alejandro & Hanson, Timothy & Quintana, Fernando A. & Müller, Peter & Rosner, Gary L., 2011. "DPpackage: Bayesian Semi- and Nonparametric Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i05).
    4. M.C. Jones & D.A. Henderson, 2007. "Miscellanea Kernel-Type Density Estimation on the Unit Interval," Biometrika, Biometrika Trust, vol. 94(4), pages 977-984.
    5. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    6. Dai, J. & Sperlich, S., 2010. "Simple and effective boundary correction for kernel densities and regression with an application to the world income and Engel curve estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2487-2497, November.
    7. Peter Müller & Fernando Quintana & Gary Rosner, 2004. "A method for combining inference across related nonparametric Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 735-749, August.
    8. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    9. Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:229-241. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.