IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v74y2009i2p211-232.html
   My bibliography  Save this article

A Bayesian Nonparametric Approach to Test Equating

Author

Listed:
  • George Karabatsos

    ()

  • Stephen Walker

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • George Karabatsos & Stephen Walker, 2009. "A Bayesian Nonparametric Approach to Test Equating," Psychometrika, Springer;The Psychometric Society, vol. 74(2), pages 211-232, June.
  • Handle: RePEc:spr:psycho:v:74:y:2009:i:2:p:211-232
    DOI: 10.1007/s11336-008-9096-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-008-9096-6
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    2. Stephen G. Walker & Paul Damien & PuruShottam W. Laud & Adrian F. M. Smith, 1999. "Bayesian Nonparametric Inference for Random Distributions and Related Functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 485-527.
    3. Peter Müller & Fernando Quintana & Gary Rosner, 2004. "A method for combining inference across related nonparametric Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 735-749.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González, Jorge, 2014. "SNSequate: Standard and Nonstandard Statistical Models and Methods for Test Equating," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i07).
    2. Christian Macaro & Raquel Prado, 2014. "Spectral Decompositions of Multiple Time Series: A Bayesian Non-parametric Approach," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 105-129, January.
    3. González, Jorge & Barrientos, Andrés F. & Quintana, Fernando A., 2015. "Bayesian nonparametric estimation of test equating functions with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 222-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:74:y:2009:i:2:p:211-232. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.