IDEAS home Printed from
   My bibliography  Save this paper

Models beyond the Dirichlet process


  • Antonio Lijoi


  • Igor Pruenster



Bayesian nonparametric inference is a relatively young area of research and it has recently undergone a strong development. Most of its success can be explained by the considerable degree of exibility it ensures in statistical modelling, if compared to parametric alternatives, and by the emergence of new and ecient simulation techniques that make nonparametric models amenable to concrete use in a number of applied statistical problems. Since its introduction in 1973 by T.S. Ferguson, the Dirichlet process has emerged as a cornerstone in Bayesian nonparametrics. Nonetheless, in some cases of interest for statistical applications the Dirichlet process is not an adequate prior choice and alternative nonparametric models need to be devised. In this paper we provide a review of Bayesian nonparametric models that go beyond the Dirichlet process.

Suggested Citation

  • Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
  • Handle: RePEc:icr:wpmath:23-2009

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2009. "Posterior Analysis for Normalized Random Measures with Independent Increments," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 76-97.
    2. Antonio Lijoi & Igor Pruenster & Stephen G. Walker, 2008. "Bayesian nonparametric estimators derived from conditional Gibbs structures," ICER Working Papers - Applied Mathematics Series 06-2008, ICER - International Centre for Economic Research.
    3. Hanson T. & Johnson W.O., 2002. "Modeling Regression Error With a Mixture of Polya Trees," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1020-1033, December.
    4. James, Lancelot F., 2003. "A simple proof of the almost sure discreteness of a class of random measures," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 363-368, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ruth Fuentes–García & Ramsés Mena & Stephen Walker, 2010. "A Probability for Classification Based on the Dirichlet Process Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 389-403, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:23-2009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Pellegrino). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.