IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v179y2025ics0304414924002084.html
   My bibliography  Save this article

Dual process in the two-parameter Poisson–Dirichlet diffusion

Author

Listed:
  • Griffiths, Robert C.
  • Ruggiero, Matteo
  • Spanò, Dario
  • Zhou, Youzhou

Abstract

The two-parameter Poisson–Dirichlet diffusion takes values in the infinite ordered simplex and extends the celebrated infinitely-many-neutral-alleles model, having a two-parameter Poisson–Dirichlet stationary distribution. Here we identify a dual process for this diffusion and obtain its transition probabilities. The dual is shown to be given by Kingman’s coalescent with mutation, conditional on a given configuration of leaves. Interestingly, the dual depends on the additional parameter of the stationary distribution only through the test functions and not through the transition rates. After discussing the sampling probabilities of a two-parameter Poisson–Dirichlet partition drawn conditionally on another partition, we use these notions together with the dual process to derive the transition density of the diffusion. Our derivation provides a new probabilistic proof of this result, leveraging on an extension of Pitman’s Pólya urn scheme, whereby the urn is split after a finite number of steps and two urns are run independently onwards. The proof strategy exemplifies the power of duality and could be exported to other models where a dual is available.

Suggested Citation

  • Griffiths, Robert C. & Ruggiero, Matteo & Spanò, Dario & Zhou, Youzhou, 2025. "Dual process in the two-parameter Poisson–Dirichlet diffusion," Stochastic Processes and their Applications, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002084
    DOI: 10.1016/j.spa.2024.104500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924002084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Lijoi & Igor Prunster, 2009. "Models beyond the Dirichlet process," Quaderni di Dipartimento 103, University of Pavia, Department of Economics and Quantitative Methods.
    2. Carinci, Gioia & Giardinà, Cristian & Giberti, Claudio & Redig, Frank, 2015. "Dualities in population genetics: A fresh look with new dualities," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 941-969.
    3. Antonio Lijoi & Igor Prünster, 2009. "Models beyond the Dirichlet process," Carlo Alberto Notebooks 129, Collegio Carlo Alberto.
    4. Kon Kam King, Guillaume & Pandolfi, Andrea & Piretto, Marco & Ruggiero, Matteo, 2024. "Approximate filtering via discrete dual processes," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    5. Champagnat, Nicolas & Hass, Vincent, 2023. "Existence, uniqueness and ergodicity for the centered Fleming–Viot process," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    6. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    7. Griffiths, Robert C. & Jenkins, Paul A. & Spanò, Dario, 2018. "Wright–Fisher diffusion bridges," Theoretical Population Biology, Elsevier, vol. 122(C), pages 67-77.
    8. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    9. Etheridge, A.M. & Griffiths, R.C., 2009. "A coalescent dual process in a Moran model with genic selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 320-330.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kon Kam King, Guillaume & Pandolfi, Andrea & Piretto, Marco & Ruggiero, Matteo, 2024. "Approximate filtering via discrete dual processes," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    2. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    3. Griffiths, Robert C. & Jenkins, Paul A. & Lessard, Sabin, 2016. "A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning," Theoretical Population Biology, Elsevier, vol. 112(C), pages 126-138.
    4. Möhle, Martin, 2024. "On multi-type Cannings models and multi-type exchangeable coalescents," Theoretical Population Biology, Elsevier, vol. 156(C), pages 103-116.
    5. Ruth Fuentes–García & Ramsés Mena & Stephen Walker, 2010. "A Probability for Classification Based on the Dirichlet Process Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 389-403, November.
    6. Desai, Michael M. & Nicolaisen, Lauren E. & Walczak, Aleksandra M. & Plotkin, Joshua B., 2012. "The structure of allelic diversity in the presence of purifying selection," Theoretical Population Biology, Elsevier, vol. 81(2), pages 144-157.
    7. Frank Hollander & Shubhamoy Nandan, 2022. "Spatially Inhomogeneous Populations with Seed-Banks: I. Duality, Existence and Clustering," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1795-1841, September.
    8. Der, Ricky & Epstein, Charles L. & Plotkin, Joshua B., 2011. "Generalized population models and the nature of genetic drift," Theoretical Population Biology, Elsevier, vol. 80(2), pages 80-99.
    9. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    10. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.
    11. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    12. Jan Niklas Latz & Jan M. Swart, 2023. "Commutative Monoid Duality," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1088-1115, June.
    13. Lenz, Ute & Kluth, Sandra & Baake, Ellen & Wakolbinger, Anton, 2015. "Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution," Theoretical Population Biology, Elsevier, vol. 103(C), pages 27-37.
    14. Vogl, Claus & Mikula, Lynette Caitlin, 2021. "A nearly-neutral biallelic Moran model with biased mutation and linear and quadratic selection," Theoretical Population Biology, Elsevier, vol. 139(C), pages 1-17.
    15. Schrempf, Dominik & Hobolth, Asger, 2017. "An alternative derivation of the stationary distribution of the multivariate neutral Wright–Fisher model for low mutation rates with a view to mutation rate estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 114(C), pages 88-94.
    16. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    17. Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
    18. Anja Sturm & Jan M. Swart, 2018. "Pathwise Duals of Monotone and Additive Markov Processes," Journal of Theoretical Probability, Springer, vol. 31(2), pages 932-983, June.
    19. Corujo, Josué, 2021. "Dynamics of a Fleming–Viot type particle system on the cycle graph," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 57-91.
    20. Belitsky, V. & Schütz, G.M., 2018. "Self-duality and shock dynamics in the n-species priority ASEP," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1165-1207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.