IDEAS home Printed from https://ideas.repec.org/p/pav/demwpp/demwp0008.html
   My bibliography  Save this paper

On the stick–breaking representation of normalized inverse Gaussian priors

Author

Listed:
  • Stefano Favaro

    () (University of Turin and Collegio Carlo Alberto)

  • Antonio Lijoi

    () (Department of Economics and Management, University of Pavia and Collegio Carlo Alberto)

  • Igor Prünster

    () (University of Turin and Collegio Carlo Alberto)

Abstract

Random probability measures are the main tool for Bayesian nonparametric inference, with their laws acting as prior distributions. Many well–known priors used in practice admit different, though (in distribution) equivalent, representations. Some of these are convenient if one wishes to thoroughly analyze the theoretical properties of the priors being used, others are more useful for modeling dependence and for addressing computational issues. As for the latter purpose, so–called stick–breaking constructions certainly stand out. In this paper we focus on the recently introduced normalized inverse Gaussian process and provide a completely explicit stick–breaking representation for it. Such a new result is of interest both from a theoretical viewpoint and for statistical practice.

Suggested Citation

  • Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
  • Handle: RePEc:pav:demwpp:demwp0008
    as

    Download full text from publisher

    File URL: http://economia.unipv.it/docs/dipeco/quad/ps/RePEc/pav/demwpp/DEMWP0008.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
    2. Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2007. "Bayesian Nonparametric Estimation of the Probability of Discovering New Species," Biometrika, Biometrika Trust, vol. 94(4), pages 769-786.
    3. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    4. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2009. "Posterior Analysis for Normalized Random Measures with Independent Increments," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 76-97.
    5. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782.
    6. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2006. "Conjugacy as a Distinctive Feature of the Dirichlet Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 105-120.
    7. Jason A. Duan & Michele Guindani & Alan E. Gelfand, 2007. "Generalized Spatial Dirichlet Process Models," Biometrika, Biometrika Trust, vol. 94(4), pages 809-825.
    8. C. Yau & O. Papaspiliopoulos & G. O. Roberts & C. Holmes, 2011. "Bayesian non‐parametric hidden Markov models with applications in genomics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 37-57, January.
    9. Dunson, David B. & Xue, Ya & Carin, Lawrence, 2008. "The Matrix Stick-Breaking Process: Flexible Bayes Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 317-327, March.
    10. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    11. Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.
    12. David B. Dunson & Ju-Hyun Park, 2008. "Kernel stick-breaking processes," Biometrika, Biometrika Trust, vol. 95(2), pages 307-323.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian Nonparametrics; Dirichlet process; Normalized Inverse Gaussian process; Random Probability Measures; Stick–breaking representation.;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pav:demwpp:demwp0008. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alice Albonico) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/dppavit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.