IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p97-109.html
   My bibliography  Save this article

Similarity analysis in Bayesian random partition models

Author

Listed:
  • Navarrete, Carlos A.
  • Quintana, Fernando A.

Abstract

This work proposes a method to assess the influence of individual observations in the clustering generated by any process that involves random partitions. We call it Similarity Analysis. It basically consists of decomposing the estimated similarity matrix into an intrinsic and an extrinsic part, coupled with a new approach for representing and interpreting partitions. Individual influence is associated with the particular ordering induced by individual covariates, which in turn provides an interpretation of the underlying clustering mechanism. We present applications in the context of Species Sampling Mixture Models (SSMMs), including Bayesian density estimation and dependent linear regression models.

Suggested Citation

  • Navarrete, Carlos A. & Quintana, Fernando A., 2011. "Similarity analysis in Bayesian random partition models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 97-109, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:97-109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00215-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2007. "Bayesian Nonparametric Estimation of the Probability of Discovering New Species," Biometrika, Biometrika Trust, vol. 94(4), pages 769-786.
    2. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    3. Jara, Alejandro & Jose Garcia-Zattera, Maria & Lesaffre, Emmanuel, 2007. "A Dirichlet process mixture model for the analysis of correlated binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5402-5415, July.
    4. Fernando A. Quintana & Pilar L. Iglesias, 2003. "Bayesian clustering and product partition models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 557-574, May.
    5. Rolando De la Cruz‐Mesía & Fernando A. Quintana & Peter Müller, 2007. "Semiparametric Bayesian classification with longitudinal markers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(2), pages 119-137, March.
    6. Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.
    7. Lijoi, Antonio & Mena, Ramses H. & Prunster, Igor, 2005. "Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1278-1291, December.
    8. David B. Dunson & Natesh Pillai & Ju‐Hyun Park, 2007. "Bayesian density regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 163-183, April.
    9. A. Azzalini & A.W. Bowman, 1990. "A Look at Some Data on the Old Faithful Geyser," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(3), pages 357-365, November.
    10. Abel Rodríguez & David B. Dunson & Alan E. Gelfand, 2009. "Bayesian nonparametric functional data analysis through density estimation," Biometrika, Biometrika Trust, vol. 96(1), pages 149-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    2. Yeonseung Chung & David Dunson, 2011. "The local Dirichlet process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 59-80, February.
    3. Gutiérrez, Luis & Mena, Ramsés H. & Ruggiero, Matteo, 2016. "A time dependent Bayesian nonparametric model for air quality analysis," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 161-175.
    4. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    5. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    6. Michael L. Pennell & David B. Dunson, 2008. "Nonparametric Bayes Testing of Changes in a Response Distribution with an Ordinal Predictor," Biometrics, The International Biometric Society, vol. 64(2), pages 413-423, June.
    7. Maria De Iorio & Wesley O. Johnson & Peter Müller & Gary L. Rosner, 2009. "Bayesian Nonparametric Nonproportional Hazards Survival Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 762-771, September.
    8. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    9. Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
    10. Pierpaolo De Blasi & Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster & Mattteo Ruggiero, 2013. "Are Gibbs-type priors the most natural generalization of the Dirichlet process?," DEM Working Papers Series 054, University of Pavia, Department of Economics and Management.
    11. Corradin, Riccardo & Nieto-Barajas, Luis Enrique & Nipoti, Bernardo, 2022. "Optimal stratification of survival data via Bayesian nonparametric mixtures," Econometrics and Statistics, Elsevier, vol. 22(C), pages 17-38.
    12. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    13. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    14. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    15. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    16. Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
    17. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    18. Trippa, Lorenzo & Muliere, Pietro, 2009. "Bayesian nonparametric binary regression via random tessellations," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2273-2280, November.
    19. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2016. "Random density functions with common atoms and pairwise dependence," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 236-249.
    20. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:97-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.