IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v66y2004i3p735-749.html
   My bibliography  Save this article

A method for combining inference across related nonparametric Bayesian models

Author

Listed:
  • Peter Müller
  • Fernando Quintana
  • Gary Rosner

Abstract

Summary. We consider the problem of combining inference in related nonparametric Bayes models. Analogous to parametric hierarchical models, the hierarchical extension formalizes borrowing strength across the related submodels. In the nonparametric context, modelling is complicated by the fact that the random quantities over which we define the hierarchy are infinite dimensional. We discuss a formal definition of such a hierarchical model. The approach includes a regression at the level of the nonparametric model. For the special case of Dirichlet process mixtures, we develop a Markov chain Monte Carlo scheme to allow efficient implementation of full posterior inference in the given model.

Suggested Citation

  • Peter Müller & Fernando Quintana & Gary Rosner, 2004. "A method for combining inference across related nonparametric Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 735-749, August.
  • Handle: RePEc:bla:jorssb:v:66:y:2004:i:3:p:735-749
    DOI: 10.1111/j.1467-9868.2004.05564.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2004.05564.x
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2014. "Dependent mixture models: Clustering and borrowing information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 417-433.
    2. Hatjispyros, Spyridon J. & Merkatas, Christos & Nicoleris, Theodoros & Walker, Stephen G., 2018. "Dependent mixtures of geometric weights priors," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 1-18.
    3. George Karabatsos & Stephen Walker, 2009. "A Bayesian Nonparametric Approach to Test Equating," Psychometrika, Springer;The Psychometric Society, vol. 74(2), pages 211-232, June.
    4. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    5. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
    6. Abel Rodr�guez & Enrique ter Horst, 2011. "Measuring expectations in options markets: an application to the S&P500 index," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1393-1405, July.
    7. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2011. "Dependent mixtures of Dirichlet processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2011-2025, June.
    8. Leisen, Fabrizio & Casarin, Roberto & Bassetti, Federico, 2011. "Beta-product Poisson-Dirichlet Processes," DES - Working Papers. Statistics and Econometrics. WS 12160, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    10. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    11. Andrew Cron & Cécile Gouttefangeas & Jacob Frelinger & Lin Lin & Satwinder K Singh & Cedrik M Britten & Marij J P Welters & Sjoerd H van der Burg & Mike West & Cliburn Chan, 2013. "Hierarchical Modeling for Rare Event Detection and Cell Subset Alignment across Flow Cytometry Samples," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-14, July.
    12. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    13. Rodrigues, G.S. & Nott, David J. & Sisson, S.A., 2016. "Functional regression approximate Bayesian computation for Gaussian process density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 229-241.
    14. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2016. "Random density functions with common atoms and pairwise dependence," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 236-249.
    15. Antonio Lijoi & Bernardo Nipoti & Igor Prünster, 2013. "Dependent mixture models: clustering and borrowing information," DEM Working Papers Series 046, University of Pavia, Department of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:66:y:2004:i:3:p:735-749. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.