IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924012578.html
   My bibliography  Save this article

An adaptive exploration mechanism for Q-learning in spatial public goods games

Author

Listed:
  • Shen, Shaofei
  • Zhang, Xuejun
  • Xu, Aobo
  • Duan, Taisen

Abstract

The Q-learning algorithm has been widely applied to investigate the emergence of cooperation in social dilemmas. Despite ϵ -greedy being the most common exploration strategy in Q-learning, mechanisms for adjusting exploration as the game environment changes have not been thoroughly researched. To stay close to reality, this paper proposes an environment-adaptive exploration-based Q-Learning algorithm. We applied the registration concept from image processing to characterize agents’ sensitivity to changes in their surrounding environment to obtain local stimulation. Additionally, we calculated the advantage differences between the agent and the global environment to acquire global stimulation. Simulation results on the public goods game show that the level of cooperation increases and the fraction of exploration consequently decreases when the agents focus more on the local environment. However, the impact of the basic exploration rate on the level of cooperation is not uniform: when the enhancement factor is low, an increase in the exploration rate promotes cooperation, while when the enhancement factor is high, increasing the exploration rate reduces the level of cooperation. The basic exploration rate directly affects the fraction of exploration. Therefore, increasing the basic exploration rate can stably increase the fraction of exploration of the agents. Similarly, the effect of the memory strength parameter λ on the level of cooperation is positively correlated, and increasing the value of λ increases the level of cooperation across the board. These evolutionary dynamics could enrich the understanding of cooperation in complex systems.

Suggested Citation

  • Shen, Shaofei & Zhang, Xuejun & Xu, Aobo & Duan, Taisen, 2024. "An adaptive exploration mechanism for Q-learning in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012578
    DOI: 10.1016/j.chaos.2024.115705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
    3. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    4. Ding, Hong & Zhang, Geng-shun & Wang, Shi-hao & Li, Juan & Wang, Zhen, 2019. "Q-learning boosts the evolution of cooperation in structured population by involving extortion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    5. repec:hhs:iuiwop:487 is not listed on IDEAS
    6. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    7. Shilin Xiao & Liming Zhang & Haihong Li & Qionglin Dai & Junzhong Yang, 2022. "Environment-driven migration enhances cooperation in evolutionary public goods games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-9, April.
    8. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
    9. José M. Montoya & Stuart L. Pimm & Ricard V. Solé, 2006. "Ecological networks and their fragility," Nature, Nature, vol. 442(7100), pages 259-264, July.
    10. repec:fth:iniesr:487 is not listed on IDEAS
    11. Jackson, Matthew O. & Watts, Alison, 2002. "The Evolution of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 106(2), pages 265-295, October.
    12. Zhang, Huizhen & An, Tianbo & Yan, Pingping & Hu, Kaipeng & An, Jinjin & Shi, Lijuan & Zhao, Jian & Wang, Jingrui, 2024. "Exploring cooperative evolution with tunable payoff’s loners using reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    13. Liu, Yongkui & Li, Zhi & Chen, Xiaojie & Wang, Long, 2010. "Memory-based prisoner’s dilemma on square lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2390-2396.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Zhenxi & Xu, Jiwei & Dai, Dameng & Liang, Tairan & Mao, Deming & Zhao, Dawei, 2018. "Rational conformity behavior can promote cooperation in the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 92-96.
    2. Zheng, Junjun & He, Yujie & Ren, Tianyu & Huang, Yongchao, 2022. "Evolution of cooperation in public goods games with segregated networks and periodic invasion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    3. Xie, Kai & Liu, Tingjin, 2024. "The regulation of good and evi promotes cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 478(C).
    4. Christian Hilbe & Moshe Hoffman & Martin A. Nowak, 2015. "Cooperate without Looking in a Non-Repeated Game," Games, MDPI, vol. 6(4), pages 1-15, September.
    5. Floriana Gargiulo & José J Ramasco, 2012. "Influence of Opinion Dynamics on the Evolution of Games," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    6. Roland Pongou & Roberto Serrano, 2009. "A Dynamic Theory of Fidelity Networks with an Application to the Spread of HIV/AIDS," Working Papers 2009-2, Brown University, Department of Economics.
    7. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-19, April.
    8. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    9. Haozheng Xu & Yiwen Zhang & Xing Jin & Jingrui Wang & Zhen Wang, 2023. "The Evolution of Cooperation in Multigames with Uniform Random Hypergraphs," Mathematics, MDPI, vol. 11(11), pages 1-11, May.
    10. Huang, Keke & Zheng, Xiaoping & Yang, Yeqing & Wang, Tao, 2015. "Behavioral evolution in evacuation crowd based on heterogeneous rationality of small groups," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 501-506.
    11. Zha, Jiajing & Li, Cong & Fan, Suohai, 2022. "The effect of stability-based strategy updating on cooperation in evolutionary social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    12. Rong-Hua Li & Jeffrey Xu Yu & Jiyuan Lin, 2013. "Evolution of Cooperation in Spatial Traveler's Dilemma Game," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    13. Jackson, Matthew O. & Zenou, Yves, 2015. "Games on Networks," Handbook of Game Theory with Economic Applications,, Elsevier.
    14. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "The impact of current and historical reputation with non-uniform change on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    15. Wang, Chengjie & Deng, Juan & Zhao, Hui & Li, Li, 2024. "Effect of Q-learning on the evolution of cooperation behavior in collective motion: An improved Vicsek model," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    16. Wang, Zhen & Chen, Tong & Wang, Yongjie, 2017. "Leadership by example promotes the emergence of cooperation in public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 100-105.
    17. Arieli, Itai & Babichenko, Yakov & Peretz, Ron & Young, H. Peyton, 2020. "The speed of innovation diffusion in social networks," LSE Research Online Documents on Economics 102538, London School of Economics and Political Science, LSE Library.
    18. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    19. M.G. Zimmermann, V. M. Eguiluz, 2001. "Evolution of Cooperative Networks and the Emergence of Leadership," Computing in Economics and Finance 2001 171, Society for Computational Economics.
    20. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.