IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v167y2023ics0960077922011948.html
   My bibliography  Save this article

Coexistence of chaotic and non-chaotic attractors in a three-species slow–fast system

Author

Listed:
  • Chowdhury, Pranali Roy
  • Banerjee, Malay
  • Petrovskii, Sergei

Abstract

The dynamical complexity of conceptual few-species systems has long been attracting considerable attention. In particular, significant attention has been paid to the three trophic level systems to demonstrate that even a baseline prey/predator/top-predator system can exhibit complex dynamics. However, previous studies left many open questions. In this paper, we consider a generalization of the Hastings–Powell model that include intraspecific competition among the predators and top predators. To enhance the ecological relevance of the model, we incorporate different timescales for different species. Specifically, we aim to study how the dynamics of the system is affected in the presence of multiple timescales along the trophic levels. We employ the geometric singular perturbation approach to analyze the change in species abundance over three different timescales, slow, fast, and intermediate. We analytically determine the entry and exit points from the vicinity of the critical manifold; the corresponding values act as critical thresholds for a sudden, fast transition in population density. We show that the properties of this generalized form of the Hastings–Powell model are dynamically more rich than it was observed in previous studies; particularly, the system can exhibit bi-stability or tri-stability in certain parameter intervals. The existence of a homoclinic orbit in a limiting subsystem (prey–predator) indicates period-doubling cascades to chaos in the full system (prey–predator–top predator). We further investigate the impact of the intraspecific competition of predators and top predators on the system’s dynamics. Strong intraspecific competition among the predators and top predators shows periodic coexistence of all species. In contrast, weak competition can drive the system to exhibit tri-stability, which includes the coexistence of chaotic and periodic (of different periods) attractors.

Suggested Citation

  • Chowdhury, Pranali Roy & Banerjee, Malay & Petrovskii, Sergei, 2023. "Coexistence of chaotic and non-chaotic attractors in a three-species slow–fast system," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922011948
    DOI: 10.1016/j.chaos.2022.113015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922011948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.113015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lutz Becks & Frank M. Hilker & Horst Malchow & Klaus Jürgens & Hartmut Arndt, 2005. "Experimental demonstration of chaos in a microbial food web," Nature, Nature, vol. 435(7046), pages 1226-1229, June.
    2. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    3. Elisa Benincà & Jef Huisman & Reinhard Heerkloss & Klaus D. Jöhnk & Pedro Branco & Egbert H. Van Nes & Marten Scheffer & Stephen P. Ellner, 2008. "Chaos in a long-term experiment with a plankton community," Nature, Nature, vol. 451(7180), pages 822-825, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yuhang & Ni, Mingkang, 2024. "Complex dynamics in a singularly perturbed Hastings–Powell model with the additive Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Zuchong & Qiao, Yuanhua, 2024. "Complex dynamics of a four-species food web model with nonlinear top predator harvesting and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 458-484.
    2. repec:plo:pcbi00:1002017 is not listed on IDEAS
    3. Occhipinti, Guido & Solidoro, Cosimo & Grimaudo, Roberto & Valenti, Davide & Lazzari, Paolo, 2023. "Marine ecosystem models of realistic complexity rarely exhibits significant endogenous non-stationary dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Richard Ottermanns & Kerstin Szonn & Thomas G Preuß & Martina Roß-Nickoll, 2014. "Non-Linear Analysis Indicates Chaotic Dynamics and Reduced Resilience in Model-Based Daphnia Populations Exposed to Environmental Stress," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.
    5. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    6. I. Bonamassa & B. Gross & J. Kertész & S. Havlin, 2025. "Hybrid universality classes of systemic cascades," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    8. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    9. Rustici, M. & Ceccherelli, G. & Piazzi, L., 2017. "Predator exploitation and sea urchin bistability: Consequence on benthic alternative states," Ecological Modelling, Elsevier, vol. 344(C), pages 1-5.
    10. Zeeuw, Aart de, 2024. "Climate change, tipping points, and economics," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 109(C).
    11. King, Elizabeth G. & Franz, Trenton E., 2016. "Combining ecohydrologic and transition probability-based modeling to simulate vegetation dynamics in a semi-arid rangeland," Ecological Modelling, Elsevier, vol. 329(C), pages 41-63.
    12. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    13. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    14. Didier L. Baho & Ülkü Nihan Tavşanoğlu & Michal Šorf & Kostantinos Stefanidis & Stina Drakare & Ulrike Scharfenberger & Helen Agasild & Meryem Beklioğlu & Josef Hejzlar & Rita Adrian & Eva Papastergia, 2015. "Macroecological Patterns of Resilience Inferred from a Multinational, Synchronized Experiment," Sustainability, MDPI, vol. 7(2), pages 1-19, January.
    15. Aurélie Méjean & Antonin Pottier & Marc Fleurbaey & Stéphane Zuber, 2020. "Catastrophic climate change, population ethics and intergenerational equity," Climatic Change, Springer, vol. 163(2), pages 873-890, November.
    16. Behzad D Karkaria & Angelika Manhart & Alex J H Fedorec & Chris P Barnes, 2022. "Chaos in synthetic microbial communities," PLOS Computational Biology, Public Library of Science, vol. 18(10), pages 1-24, October.
    17. Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    18. Franklin, Sergio L. & Pindyck, Robert S., 2018. "Tropical Forests, Tipping Points, and the Social Cost of Deforestation," Ecological Economics, Elsevier, vol. 153(C), pages 161-171.
    19. I.B., Tagne nkounga & F.M., Moukam kakmeni & R., Yamapi, 2022. "Birhythmic oscillations and global stability analysis of a conductance-based neuronal model under ion channel fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    20. Andrea Taramelli & Emiliana Valentini & Laura Piedelobo & Margherita Righini & Sergio Cappucci, 2021. "Assessment of State Transition Dynamics of Coastal Wetlands in Northern Venice Lagoon, Italy," Sustainability, MDPI, vol. 13(8), pages 1-24, April.
    21. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077922011948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.