IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077922000182.html
   My bibliography  Save this article

Myopic vs. foresighted behaviors in a transboundary pollution game with abatement policy and emission permits trading

Author

Listed:
  • Wang, Xinyu
  • Zhang, Shuhua
  • Hao, Wenwei

Abstract

In this paper, we extend the model proposed in Benchekroun, H. and Martin-Herran, G. (2016). The impact of foresight in a transboundary pollution game. European Journal of Operational Research, 251(1), 300–309, to a more general one, in which emission permits trading and abatement policy are taken into consideration, to examine the effect of foresight on the optimal emission levels and optimal abatements in a transboundary industrial pollution game. In our model, a foresighted country chooses strategies to maximize the long-term payoff, while a myopic player ignores the impact of his decisions on the future evolutions of payoff and pollution stock. Considering the emission permits price and abatement costs, we obtain the abatement levels, the emission levels, the value functions, and the trajectories of pollution stocks of the farsighted and myopic countries, respectively. Consisting with the previous, our results show that the revenues obtained from farsighted behavior are larger than those from myopia, and the total emission of myopic countries is more than that of the farsighted ones. The total emissions will decrease with the increasing of abatement cost coefficients and emission permits price. New results are from two aspects. On the one hand, for a myopic country, the larger the abatement cost coefficients are, the smaller the willingness to acquire foresight is. On the other hand, when a myopic country acquires foresight, the other myopic countries still do not implement the abatement, while the farsighted countries should improve their abatement levels.

Suggested Citation

  • Wang, Xinyu & Zhang, Shuhua & Hao, Wenwei, 2022. "Myopic vs. foresighted behaviors in a transboundary pollution game with abatement policy and emission permits trading," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000182
    DOI: 10.1016/j.chaos.2022.111807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922000182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y.H. Farzin & P.M. Kort, 2000. "Pollution Abatement Investment When Environmental Regulation Is Uncertain," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 2(2), pages 183-212, April.
    2. Shuhua Chang & Suresh P. Sethi & Xinyu Wang, 2018. "Optimal Abatement and Emission Permit Trading Policies in a Dynamic Transboundary Pollution Game," Dynamic Games and Applications, Springer, vol. 8(3), pages 542-572, September.
    3. Benchekroun, Hassan & Martín-Herrán, Guiomar, 2016. "The impact of foresight in a transboundary pollution game," European Journal of Operational Research, Elsevier, vol. 251(1), pages 300-309.
    4. Li, Liming & Chen, Weidong, 2021. "The impact of subsidies in a transboundary pollution game with myopic players," Omega, Elsevier, vol. 103(C).
    5. Dockner Engelbert J. & Van Long Ngo, 1993. "International Pollution Control: Cooperative versus Noncooperative Strategies," Journal of Environmental Economics and Management, Elsevier, vol. 25(1), pages 13-29, July.
    6. Bertinelli, Luisito & Camacho, Carmen & Zou, Benteng, 2014. "Carbon capture and storage and transboundary pollution: A differential game approach," European Journal of Operational Research, Elsevier, vol. 237(2), pages 721-728.
    7. Bengt Kristrom & Tommy Lundgren, 2003. "Abatement investments and green goodwill," Applied Economics, Taylor & Francis Journals, vol. 35(18), pages 1915-1921.
    8. Michèle Breton & Lucia Sbragia & Georges Zaccour, 2010. "A Dynamic Model for International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 25-48, January.
    9. Tommy Lundgren, 2003. "A Real Options Approach to Abatement Investments and Green Goodwill," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(1), pages 17-31, May.
    10. Shoude Li, 2014. "A Differential Game of Transboundary Industrial Pollution with Emission Permits Trading," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 642-659, November.
    11. Shuhua Chang & Xinyu Wang & Alexander Shananin, 2015. "Modeling and Computation of Mean Field Equilibria in Producers' Game with Emission Permits Trading," Papers 1506.04869, arXiv.org.
    12. Chang, Shuhua & Qin, Weihua & Wang, Xinyu, 2018. "Dynamic optimal strategies in transboundary pollution game under learning by doing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 139-147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuhua Chang & Suresh P. Sethi & Xinyu Wang, 2018. "Optimal Abatement and Emission Permit Trading Policies in a Dynamic Transboundary Pollution Game," Dynamic Games and Applications, Springer, vol. 8(3), pages 542-572, September.
    2. Hao Xu & Deqing Tan, 2023. "Optimal Abatement Technology Licensing in a Dynamic Transboundary Pollution Game: Fixed Fee Versus Royalty," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 905-935, March.
    3. Li, Liming & Chen, Weidong, 2021. "The impact of subsidies in a transboundary pollution game with myopic players," Omega, Elsevier, vol. 103(C).
    4. Javier Frutos & Víctor Gatón & Paula M. López-Pérez & Guiomar Martín-Herrán, 2022. "Investment in Cleaner Technologies in a Transboundary Pollution Dynamic Game: A Numerical Investigation," Dynamic Games and Applications, Springer, vol. 12(3), pages 813-843, September.
    5. Li, Huiquan & Guo, Genlong, 2019. "A differential game analysis of multipollutant transboundary pollution in river basin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Hao Xu & Ming Luo, 2022. "Optimal Environmental Policy in a Dynamic Transboundary Pollution Game: Emission Standards, Taxes, and Permit Trading," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    7. Baogui Xin & Wei Peng & Minghe Sun, 2019. "Optimal Coordination Strategy for International Production Planning and Pollution Abating under Cap-and-Trade Regulations," IJERPH, MDPI, vol. 16(18), pages 1-21, September.
    8. Li, Shoude & Zhang, Yingxuan, 2023. "Abatement technology innovation and pollution tax design: A dynamic analysis in monopoly," Energy Economics, Elsevier, vol. 119(C).
    9. Fangju Jia & Dong‐dong Wang & Kun Zhou & Lianshui Li, 2022. "Differential decision analysis of transboundary pollution considering the participation of the central government," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 1684-1703, September.
    10. Jiayi Sun & Deqing Tan, 2023. "Non-cooperative Mode, Cost-Sharing Mode, or Cooperative Mode: Which is the Optimal Mode for Desertification Control?," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 975-1008, March.
    11. Fouad El Ouardighi & Konstantin Kogan & Giorgio Gnecco & Marcello Sanguineti, 2020. "Transboundary pollution control and environmental absorption efficiency management," Annals of Operations Research, Springer, vol. 287(2), pages 653-681, April.
    12. Benchekroun, Hassan & Martín-Herrán, Guiomar, 2016. "The impact of foresight in a transboundary pollution game," European Journal of Operational Research, Elsevier, vol. 251(1), pages 300-309.
    13. Xiao, Lu & Liu, Jianyue & Ge, Jinwen, 2021. "Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2021. "From firm to global-level pollution control: The case of transboundary pollution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 331-345.
    15. Lu Xiao & Huacong Ding & Yu Zhong & Chaojie Wang, 2023. "Optimal Control of Industrial Pollution under Stochastic Differential Models," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    16. Shuai Jin & Yifei Niu & Liuwei Zhao, 2022. "Optimal purchase planning of initial emission permits with the paid use and trading system based on mean–variance model," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 2409-2420, September.
    17. Calvo, Emilio & Rubio, Santiago J., 2013. "Dynamic Models of International Environmental Agreements: A Differential Game Approach," International Review of Environmental and Resource Economics, now publishers, vol. 6(4), pages 289-339, April.
    18. Raouf Boucekkine & Carmen Camacho & Weihua Ruan & Benteng Zou, 2022. "Why and when coalitions split? An alternative analytical approach with an application to environmental agreements," Working Papers halshs-03676670, HAL.
    19. Wenguang Tang & Shuhua Zhang, 2019. "Modeling and Computation of Transboundary Pollution Game Based on Joint Implementation Mechanism," Complexity, Hindawi, vol. 2019, pages 1-18, August.
    20. Hassan Benchekroun & Amrita Ray Chaudhuri, 2015. "Cleaner Technologies and the Stability of International Environmental Agreements," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 17(6), pages 887-915, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.