IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v144y2021ics0960077921000217.html
   My bibliography  Save this article

A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control

Author

Listed:
  • Mohammadi, Hakimeh
  • Kumar, Sunil
  • Rezapour, Shahram
  • Etemad, Sina

Abstract

Mumps is the most common cause of acquired unilateral deafness in children, in which hearing loss occurs at all auditory frequencies. We use a box model to model hearing loss in children caused by the mumps virus, and since the fractional-order derivative retains the effect of system memory, we use the Caputo–Fabrizio fractional derivative in this modeling. In the beginning, we compute the basic reproduction number R0 and equilibrium points of the system and investigate the stability of the system at the equilibrium point. By utilizing the Picard–Lindelof technique, we prove the existence an unique solution for given fractional CF-system of hearing loss model and investigate the stability of iterative method by fixed point theory. The optimal control of the system is determined by considering the treatment as a control strategy to reduce the number of infected people. Using the Euler method for the fractional-order Caputo–Fabrizio derivative, the approximate solution of the system is calculated. We present a numerical simulation for the transmission of disease with respect to the transmission rate and the basic reproduction number in two cases R0<1 and R0>1. To investigate the effect of fractional order derivative on the behavior and value of each of the variables in Model 2, we calculate the results for several fractional order derivatives and compare the results. Also, considering the importance of reproduction number in the continuation of disease transmission, we analyze the sensitivity of R0 respect to each of the model parameters and determine the impact of each parameter.

Suggested Citation

  • Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000217
    DOI: 10.1016/j.chaos.2021.110668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921000217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    3. Fethi Bin Muhammed Belgacem & Ahmed Abdullatif Karaballi & Shyam L. Kalla, 2003. "Analytical investigations of the Sumudu transform and applications to integral production equations," Mathematical Problems in Engineering, Hindawi, vol. 2003, pages 1-16, January.
    4. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Abdo, Mohammed S. & Shah, Kamal & Wahash, Hanan A. & Panchal, Satish K., 2020. "On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    6. Altan, Aytaç & Karasu, Seçkin, 2020. "Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Khan, Tahir & Ullah, Zakir & Ali, Nigar & Zaman, Gul, 2019. "Modeling and control of the hepatitis B virus spreading using an epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahram Rezapour & Chernet Tuge Deressa & Azhar Hussain & Sina Etemad & Reny George & Bashir Ahmad, 2022. "A Theoretical Analysis of a Fractional Multi-Dimensional System of Boundary Value Problems on the Methylpropane Graph via Fixed Point Technique," Mathematics, MDPI, vol. 10(4), pages 1-26, February.
    2. Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Luo, Ziyang & Zhang, Xingdong & Wang, Shuo & Yao, Lin, 2022. "Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Mohammed K. A. Kaabar & Mehdi Shabibi & Jehad Alzabut & Sina Etemad & Weerawat Sudsutad & Francisco Martínez & Shahram Rezapour, 2021. "Investigation of the Fractional Strongly Singular Thermostat Model via Fixed Point Techniques," Mathematics, MDPI, vol. 9(18), pages 1-21, September.
    5. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Shah Hussain & Elissa Nadia Madi & Hasib Khan & Sina Etemad & Shahram Rezapour & Thanin Sitthiwirattham & Nichaphat Patanarapeelert, 2021. "Investigation of the Stochastic Modeling of COVID-19 with Environmental Noise from the Analytical and Numerical Point of View," Mathematics, MDPI, vol. 9(23), pages 1-20, December.
    7. Muhammad Aamir Ali & Fongchan Wannalookkhee & Hüseyin Budak & Sina Etemad & Shahram Rezapour, 2022. "New Hermite–Hadamard and Ostrowski-Type Inequalities for Newly Introduced Co-Ordinated Convexity with Respect to a Pair of Functions," Mathematics, MDPI, vol. 10(19), pages 1-24, September.
    8. Osama Moaaz & Fahd Masood & Clemente Cesarano & Shami A. M. Alsallami & E. M. Khalil & Mohamed L. Bouazizi, 2022. "Neutral Differential Equations of Second-Order: Iterative Monotonic Properties," Mathematics, MDPI, vol. 10(9), pages 1-11, April.
    9. Hashem Najafi & Sina Etemad & Nichaphat Patanarapeelert & Joshua Kiddy K. Asamoah & Shahram Rezapour & Thanin Sitthiwirattham, 2022. "A Study on Dynamics of CD4 + T-Cells under the Effect of HIV-1 Infection Based on a Mathematical Fractal-Fractional Model via the Adams-Bashforth Scheme and Newton Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-32, April.
    10. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    11. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    12. Abboubakar, Hamadjam & Kouchéré Guidzavaï, Albert & Yangla, Joseph & Damakoa, Irépran & Mouangue, Ruben, 2021. "Mathematical modeling and projections of a vector-borne disease with optimal control strategies: A case study of the Chikungunya in Chad," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    13. Feng, Yi-Ying & Yang, Xiao-Jun & Liu, Jian-Gen & Chen, Zhan-Qing, 2023. "Mechanical investigations of local fractional magnetorheological elastomers model on Cantor sets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    14. Shahram Rezapour & Sina Etemad & Ravi P. Agarwal & Kamsing Nonlaopon, 2022. "On a Lyapunov-Type Inequality for Control of a ψ -Model Thermostat and the Existence of Its Solutions," Mathematics, MDPI, vol. 10(21), pages 1-11, October.
    15. Mohammad Partohaghighi & Ali Akgül & Rubayyi T. Alqahtani, 2022. "New Type Modelling of the Circumscribed Self-Excited Spherical Attractor," Mathematics, MDPI, vol. 10(5), pages 1-14, February.
    16. Kaliraj, K. & Manjula, M. & Ravichandran, C., 2022. "New existence results on nonlocal neutral fractional differential equation in concepts of Caputo derivative with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    17. Sarangi, B.P. & Raw, S.N., 2023. "Dynamics of a spatially explicit eco-epidemic model with double Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 241-263.
    18. Sina Etemad & Sotiris K. Ntouyas & Bashir Ahmad & Shahram Rezapour & Jessada Tariboon, 2022. "Sequential Fractional Hybrid Inclusions: A Theoretical Study via Dhage’s Technique and Special Contractions," Mathematics, MDPI, vol. 10(12), pages 1-27, June.
    19. Sina Etemad & Albert Shikongo & Kolade M. Owolabi & Brahim Tellab & İbrahim Avcı & Shahram Rezapour & Ravi P. Agarwal, 2022. "A New Fractal-Fractional Version of Giving up Smoking Model: Application of Lagrangian Piece-Wise Interpolation along with Asymptotical Stability," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
    20. Limin Chu & Weimin Hu & Youhui Su & Yongzhen Yun, 2022. "Existence and Uniqueness of Solutions to Four-Point Impulsive Fractional Differential Equations with p -Laplacian Operator," Mathematics, MDPI, vol. 10(11), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Hu, Rongchun & Zhang, Dongxu & Gu, Xudong, 2022. "Reliability analysis of a class of stochastically excited nonlinear Markovian jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Ban, Jung-Chao & Chang, Chih-Hung & Hong, Jyy-I & Wu, Yu-Liang, 2021. "Mathematical Analysis of Spread Models: From the viewpoints of Deterministic and random cases," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Batistela, Cristiane M. & Correa, Diego P.F. & Bueno, Átila M & Piqueira, José Roberto C., 2021. "SIRSi compartmental model for COVID-19 pandemic with immunity loss," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Nikzad-Khasmakhi, N. & Balafar, M.A. & Reza Feizi-Derakhshi, M. & Motamed, Cina, 2021. "BERTERS: Multimodal representation learning for expert recommendation system with transformers and graph embeddings," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    8. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2022. "Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models," Applied Energy, Elsevier, vol. 318(C).
    9. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    10. Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Hussain, Takasar & Aslam, Adnan & Ozair, Muhammad & Tasneem, Fatima & Gómez-Aguilar, J.F., 2021. "Dynamical aspects of pine wilt disease and control measures," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    15. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Wang, Qiubao & Han, Zikun & Zhang, Xing & Yang, Yuejuan, 2021. "Dynamics of the delay-coupled bubble system combined with the stochastic term," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    17. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Abdullah, & Ahmad, Saeed & Owyed, Saud & Abdel-Aty, Abdel-Haleem & Mahmoud, Emad E. & Shah, Kamal & Alrabaiah, Hussam, 2021. "Mathematical analysis of COVID-19 via new mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    19. Zhu, Ping, 2021. "An equivalent analytical method to deal with cross-correlated exponential type noises in the nonlinear dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. Rehman, Attiq ul & Singh, Ram & Agarwal, Praveen, 2021. "Modeling, analysis and prediction of new variants of covid-19 and dengue co-infection on complex network," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.