IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921001715.html
   My bibliography  Save this article

Global Lagrange stability analysis of retarded SICNNs

Author

Listed:
  • Kashkynbayev, Ardak
  • Cao, Jinde
  • Suragan, Durvudkhan

Abstract

The stability in the Lagrange sense for cellular neural networks (CNNs) has proven to be one of the effective tools to study multi-stable dynamics of the neural networks. In this article, rather than studying the existence and Lyapunov stability of an equilibrium point we investigate multi-stable dynamics of shunting inhibitory cellular neural networks (SICNNs) with time-varying delays and coefficients. This is the first paper that addresses the Lagrange stability for SICNNs. By constructing proper Lyapunov functions and using inequality techniques, we analyze three different types of activation functions, namely, bounded, sigmoid and Lipschitz-like type activation functions. New delay-dependent sufficient criteria are derived to ensure the global Lagrange stability for SICNNs. Furthermore, globally exponentially attractive sets are given for the different activation functions. Finally, an illustrating example with numerical simulations is given to support the theoretical results.

Suggested Citation

  • Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001715
    DOI: 10.1016/j.chaos.2021.110819
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Mingshan & Zhang, Hong & Yuan, Zhaohui, 2008. "Positive almost periodic solutions for shunting inhibitory cellular neural networks with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 548-558.
    2. Jian, Jigui & Wang, Baoxian, 2015. "Global Lagrange stability for neutral-type Cohen–Grossberg BAM neural networks with mixed time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 116(C), pages 1-25.
    3. Xia, Yonghui & Cao, Jinde & Huang, Zhenkun, 2007. "Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1599-1607.
    4. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    5. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    6. Liu, Bingwen & Huang, Lihong, 2007. "Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 211-217.
    7. Pratap, A. & Raja, R. & Cao, J. & Rihan, Fathalla A. & Seadawy, Aly R., 2020. "Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Liu, Bingwen & Huang, Lihong, 2007. "Existence and exponential stability of almost periodic solutions for cellular neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 95-103.
    9. Altan, Aytaç & Karasu, Seçkin, 2020. "Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Zhou, Qiyuan & Xiao, Bing & Yu, Yuehua & Peng, Lequn, 2007. "Existence and exponential stability of almost periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 860-866.
    11. Chen, Ling & Zhao, Hongyong, 2008. "Global stability of almost periodic solution of shunting inhibitory cellular neural networks with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 351-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kashkynbayev, Ardak & Issakhanov, Alfarabi & Otkel, Madina & Kurths, Jürgen, 2022. "Finite-time and fixed-time synchronization analysis of shunting inhibitory memristive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    3. Ninghua Chen, 2013. "Existence of Periodic Solutions for Shunting Inhibitory Cellular Neural Networks with Neutral Delays," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-8, October.
    4. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2022. "Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models," Applied Energy, Elsevier, vol. 318(C).
    5. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    6. Huang, Zaitang & Yang, Qi-Gui, 2009. "Existence and exponential stability of almost periodic solution for stochastic cellular neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 773-780.
    7. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Xia, Yonghui & Wong, Patricia J.Y., 2009. "Global exponential stability of a class of retarded impulsive differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 440-453.
    9. Yu, Jiali & Yi, Zhang & Zhang, Lei, 2009. "Periodicity of a class of nonlinear fuzzy systems with delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1343-1351.
    10. Huang, Zhenkun & Xia, Yonghui, 2009. "Exponential periodic attractor of impulsive BAM networks with finite distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 373-384.
    11. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Wang, Xiaohu & Xu, Daoyi, 2009. "Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2713-2721.
    13. Sun, Yeong-Jeu, 2009. "Global exponential stability criterion for uncertain discrete-time cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2022-2024.
    14. Wang, Qiubao & Han, Zikun & Zhang, Xing & Yang, Yuejuan, 2021. "Dynamics of the delay-coupled bubble system combined with the stochastic term," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    15. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Zhao, Weirui & Zhang, Huanshui, 2009. "New results of almost periodic solutions for cellular neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 831-838.
    17. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    18. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    19. Hu, Rongchun & Zhang, Dongxu & Gu, Xudong, 2022. "Reliability analysis of a class of stochastically excited nonlinear Markovian jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. Jiang, Kai & Liu, Zhifeng & Tian, Yang & Zhang, Tao & Yang, Congbin, 2022. "An estimation method of fractal parameters on rough surfaces based on the exact spectral moment using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.