IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v222y2024icp252-263.html
   My bibliography  Save this article

Finite-time/fixed-time synchronization of memristive shunting inhibitory cellular neural networks via sliding mode control

Author

Listed:
  • Otkel, Madina
  • Ganesan, Soundararajan
  • Rajan, Rakkiyappan
  • Kashkynbayev, Ardak

Abstract

This paper proposes a novel time-dependent gain parameter-based sliding mode controller (SMC) to realize the finite-time/fixed-time synchronization of memristive shunting inhibitory cellular neural networks (Mem-SICNNs) having time-varying delays. In this regard, a new terminal sliding mode surface is designed and its reachability is analyzed. According to synchronization error analysis, the stability property of the desired error system is reached within finite-time/fixed-time range by proposing a unique time-dependent gain parameter-based SMC and choosing the appropriate Lyapunov functionals. Finally, a numerical example is approached by software simulation and manual calculation to estimate the settling-time of the finite-time/fixed-time synchronization criteria of the proposed Mem-SICNNs model.

Suggested Citation

  • Otkel, Madina & Ganesan, Soundararajan & Rajan, Rakkiyappan & Kashkynbayev, Ardak, 2024. "Finite-time/fixed-time synchronization of memristive shunting inhibitory cellular neural networks via sliding mode control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 252-263.
  • Handle: RePEc:eee:matcom:v:222:y:2024:i:c:p:252-263
    DOI: 10.1016/j.matcom.2023.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423003506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:222:y:2024:i:c:p:252-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.