IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v218y2024icp292-310.html
   My bibliography  Save this article

Continuous-time min-max consensus protocol: A unified approach

Author

Listed:
  • Rezaei, Vahid
  • Khanmirza, Esmaeel

Abstract

In this paper, a new consensus protocol is designed for linear agents in the presence of a time-variant communication topology. Furthermore, we aim to present a fully distributed unified consensus protocol. Using the proposed protocol, each agent within a communication network can iteratively update its state to the maximum state of its neighbors, change it to the minimum state of the neighboring agents, or keep its state constant. In contrast to conventional consensus protocols, which strongly require the weights of communication graph links to have a positive lower bound for reaching consensus, our proposed protocol is not restricted by such a requirement and is able to make the agents converge under more general conditions. To accelerate the convergence rate and reduce the computational time relative to other conventional protocols, various operating modes (i.e., Tracker, Following, and Cross) are assigned to each agent within the communication network. Finally, to prove the practical merits of the proposed protocol and validate its performance, two numerical examples are presented here, one for a consensus problem, and another for a consensus-based formation problem.

Suggested Citation

  • Rezaei, Vahid & Khanmirza, Esmaeel, 2024. "Continuous-time min-max consensus protocol: A unified approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 292-310.
  • Handle: RePEc:eee:matcom:v:218:y:2024:i:c:p:292-310
    DOI: 10.1016/j.matcom.2023.11.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423004810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.11.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:218:y:2024:i:c:p:292-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.