IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v124y2019icp1-9.html
   My bibliography  Save this article

Modeling and control of the hepatitis B virus spreading using an epidemic model

Author

Listed:
  • Khan, Tahir
  • Ullah, Zakir
  • Ali, Nigar
  • Zaman, Gul

Abstract

We describe the formulation of hepatitis B epidemic model with saturated incidence rate. Once we formulate the epidemic problem then we discuss the basic properties (existence of positive solutions and positively invariant set etc.) to show the mathematical as well as the biological feasibility. We find the basic reproduction number R0. The disease free and endemic equilibria of the model will be obtained to investigate the local stability and backward bifurcation. We also perform the local sensitivity analysis and find the sensitive parameter. On the basis of this, we develop the optimal control strategy for the elimination of hepatitis B virus (HBV) spreading with the help of optimization theory. Finally, a large scale numerical simulation will be performed to verify our analytical findings.

Suggested Citation

  • Khan, Tahir & Ullah, Zakir & Ali, Nigar & Zaman, Gul, 2019. "Modeling and control of the hepatitis B virus spreading using an epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 1-9.
  • Handle: RePEc:eee:chsofr:v:124:y:2019:i:c:p:1-9
    DOI: 10.1016/j.chaos.2019.04.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919301420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.04.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tilahun, Getachew Teshome & Makinde, Oluwole Daniel & Malonza, David, 2018. "Co-dynamics of Pneumonia and Typhoid fever diseases with cost effective optimal control analysis," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 438-459.
    2. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Analysis of SIR epidemic model with information spreading of awareness," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 118-125.
    3. Parsamanesh, Mahmood & Erfanian, Majid, 2018. "Global dynamics of an epidemic model with standard incidence rate and vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 192-199.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Rana Yousif & Aref Jeribi & Saad Al-Azzawi, 2023. "Fractional-Order SEIRD Model for Global COVID-19 Outbreak," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    3. Fatima, Bibi & Zaman, Gul, 2020. "Co-infection of Middle Eastern respiratory syndrome coronavirus and pulmonary tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Jorge E. Macías-Díaz & Nauman Ahmed & Muhammad Rafiq, 2019. "Analysis and Nonstandard Numerical Design of a Discrete Three-Dimensional Hepatitis B Epidemic Model," Mathematics, MDPI, vol. 7(12), pages 1-16, December.
    5. Din, Anwarud & Li, Yongjin & Khan, Tahir & Zaman, Gul, 2020. "Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Han, Bingtao & Zhou, Baoquan & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    7. Tingting Xue & Xiaolin Fan & Yan Xu, 2023. "Kinetic Behavior and Optimal Control of a Fractional-Order Hepatitis B Model," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    8. Hoang, Manh Tuan, 2023. "Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 291-314.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge E. Macías-Díaz & Nauman Ahmed & Muhammad Rafiq, 2019. "Analysis and Nonstandard Numerical Design of a Discrete Three-Dimensional Hepatitis B Epidemic Model," Mathematics, MDPI, vol. 7(12), pages 1-16, December.
    2. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    3. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    4. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    5. Fatima, Bibi & Zaman, Gul, 2020. "Co-infection of Middle Eastern respiratory syndrome coronavirus and pulmonary tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Irena, Tsegaye Kebede & Gakkhar, Sunita, 2021. "Modelling the dynamics of antimicrobial-resistant typhoid infection with environmental transmission," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    8. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    10. Alexander Tselykh & Vladislav Vasilev & Larisa Tselykh & Fernando A. F. Ferreira, 2022. "Influence control method on directed weighted signed graphs with deterministic causality," Annals of Operations Research, Springer, vol. 311(2), pages 1281-1305, April.
    11. Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Ndii, Meksianis Z. & Adi, Yudi Ari, 2021. "Understanding the effects of individual awareness and vector controls on malaria transmission dynamics using multiple optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    13. Mohammed H. Alharbi & Fawaz K. Alalhareth & Mahmoud A. Ibrahim, 2023. "Analyzing the Dynamics of a Periodic Typhoid Fever Transmission Model with Imperfect Vaccination," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    14. Sanubari Tansah Tresna & Subiyanto & Sudradjat Supian, 2022. "Mathematical Models for Typhoid Disease Transmission: A Systematic Literature Review," Mathematics, MDPI, vol. 10(14), pages 1-12, July.
    15. Hossain, Mainul & Pal, Nikhil & Samanta, Sudip, 2020. "Impact of fear on an eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    16. Huo, Liang’an & Yu, Yue, 2023. "The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    17. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    18. Javier Cifuentes-Faura & Ursula Faura-Martínez & Matilde Lafuente-Lechuga, 2022. "Mathematical Modeling and the Use of Network Models as Epidemiological Tools," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    19. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    20. Abboubakar, Hamadjam & Racke, Reinhard, 2021. "Mathematical modeling, forecasting, and optimal control of typhoid fever transmission dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:124:y:2019:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.