IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v169y2023ics0960077923001303.html
   My bibliography  Save this article

The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks

Author

Listed:
  • Huo, Liang’an
  • Yu, Yue

Abstract

In recent years, as the COVID-19 global pandemic evolves, many unprecedented new patterns of epidemic transmission continue to emerge. Reducing the impact of negative information diffusion, calling for individuals to adopt immunization behaviors, and decreasing the infection risk are of great importance to maintain public health and safety. In this paper, we construct a coupled negative information-behavior-epidemic dynamics model by considering the influence of the individual's self-recognition ability and physical quality in multiplex networks. We introduce the Heaviside step function to explore the effect of decision-adoption process on the transmission for each layer, and assume the heterogeneity of the self-recognition ability and physical quality obey the Gaussian distribution. Then, we use the microscopic Markov chain approach (MMCA) to describe the dynamic process and derive the epidemic threshold. Our findings suggest that increasing the clarification strength of mass media and enhancing individuals' self-recognition ability can facilitate the control of the epidemic. And, increasing physical quality can delay the epidemic outbreak and leads to suppress the scale of epidemic transmission. Moreover, the heterogeneity of the individuals in the information diffusion layer leads to a two-stage phase transition, while it leads to a continuous phase transition in the epidemic layer. Our results can provide favorable references for managers in controlling negative information, urging immunization behaviors and suppressing epidemics.

Suggested Citation

  • Huo, Liang’an & Yu, Yue, 2023. "The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001303
    DOI: 10.1016/j.chaos.2023.113229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923001303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jay J. Van Bavel & Katherine Baicker & Paulo S. Boggio & Valerio Capraro & Aleksandra Cichocka & Mina Cikara & Molly J. Crockett & Alia J. Crum & Karen M. Douglas & James N. Druckman & John Drury & Oe, 2020. "Using social and behavioural science to support COVID-19 pandemic response," Nature Human Behaviour, Nature, vol. 4(5), pages 460-471, May.
    2. Cui, Yajuan & Wei, Ruichen & Tian, Yang & Tian, Hui & Zhu, Xuzhen, 2022. "Information propagation influenced by individual fashion-passion trend on multi-layer weighted network," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Effect of information spreading to suppress the disease contagion on the epidemic vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 180-187.
    4. Yang, Han-Xin & Wang, Zhen, 2016. "Suppressing traffic-driven epidemic spreading by adaptive routing strategy," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 147-150.
    5. Tian, Yang & Zhu, Xuzhen & Yang, Qiwen & Tian, Hui & Cui, Qimei, 2022. "Propagation characteristic of adoption thresholds heterogeneity in double-layer networks with edge weight distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    6. David M. Morens & Gregory K. Folkers & Anthony S. Fauci, 2004. "The challenge of emerging and re-emerging infectious diseases," Nature, Nature, vol. 430(6996), pages 242-249, July.
    7. Neil Ferguson, 2007. "Capturing human behaviour," Nature, Nature, vol. 446(7137), pages 733-733, April.
    8. Lu, Yonglei & Liu, Jing, 2019. "The impact of information dissemination strategies to epidemic spreading on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    9. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    10. Peng, Hao & Peng, Wangxin & Zhao, Dandan & Wang, Wei, 2020. "Impact of the heterogeneity of adoption thresholds on behavior spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    11. Yang, Han-Xin & Tang, Ming & Wang, Zhen, 2018. "Suppressing epidemic spreading by risk-averse migration in dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 347-352.
    12. Ichinose, Genki & Kurisaku, Takehiro, 2017. "Positive and negative effects of social impact on evolutionary vaccination game in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 84-90.
    13. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Analysis of SIR epidemic model with information spreading of awareness," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 118-125.
    14. Shadi Shahsavari & Pavan Holur & Tianyi Wang & Timothy R. Tangherlini & Vwani Roychowdhury, 2020. "Conspiracy in the time of corona: automatic detection of emerging COVID-19 conspiracy theories in social media and the news," Journal of Computational Social Science, Springer, vol. 3(2), pages 279-317, November.
    15. Gao, Xingyu & Tian, Lixin, 2019. "Effects of awareness and policy on green behavior spreading in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 226-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    3. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    4. Alam, Muntasir & Tanaka, Masaki & Tanimoto, Jun, 2019. "A game theoretic approach to discuss the positive secondary effect of vaccination scheme in an infinite and well-mixed population," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 201-213.
    5. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    7. Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    8. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    9. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    10. Ivan Montiel & Junghoon Park & Bryan W. Husted & Andres Velez-Calle, 2022. "Tracing the connections between international business and communicable diseases," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(8), pages 1785-1804, October.
    11. Kow-Tong Chen, 2022. "Emerging Infectious Diseases and One Health: Implication for Public Health," IJERPH, MDPI, vol. 19(15), pages 1-4, July.
    12. Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    13. Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    14. Hui-Yi Yeh & Kou-Huang Chen & Kow-Tong Chen, 2018. "Environmental Determinants of Infectious Disease Transmission: A Focus on One Health Concept," IJERPH, MDPI, vol. 15(6), pages 1-3, June.
    15. Wolfgang Brozek & Christof Falkenberg, 2021. "Industrial Animal Farming and Zoonotic Risk: COVID-19 as a Gateway to Sustainable Change? A Scoping Study," Sustainability, MDPI, vol. 13(16), pages 1-30, August.
    16. Diosey Ramon Lugo-Morin, 2020. "Global Food Security in a Pandemic: The Case of the New Coronavirus (COVID-19)," World, MDPI, vol. 1(2), pages 1-20, September.
    17. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    18. Chun-Hsiang Chan & Tzai-Hung Wen, 2021. "Revisiting the Effects of High-Speed Railway Transfers in the Early COVID-19 Cross-Province Transmission in Mainland China," IJERPH, MDPI, vol. 18(12), pages 1-17, June.
    19. Ayat Abourashed & Laura Doornekamp & Santi Escartin & Constantianus J. M. Koenraadt & Maarten Schrama & Marlies Wagener & Frederic Bartumeus & Eric C. M. van Gorp, 2021. "The Potential Role of School Citizen Science Programs in Infectious Disease Surveillance: A Critical Review," IJERPH, MDPI, vol. 18(13), pages 1-18, June.
    20. Tobias S Brett & Pejman Rohani, 2020. "Dynamical footprints enable detection of disease emergence," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.