IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924007501.html
   My bibliography  Save this article

Impact of individual activity on behavior adoption in complex networks: A two-layer generalized SAR model analysis

Author

Listed:
  • Huo, Liang'an
  • Pan, Mengyu
  • Wei, Yanhui

Abstract

The correlation between an individual's activity level and the propagation of behavior is inherently intertwined on a social platform. Simultaneously, individuals with varying activity levels are subject to social reinforcement during the information accumulation process. In this paper, we develop a two-layer generalized Susceptible-Adopted-Recovered (SAR) model to simulate the cumulative effect of information reliability influenced by individual's activity and social reinforcement. Furthermore, we investigate how the accumulation of information reliability affects individual behavioral adoption. We provide a theoretical analysis of the mathematical model of the two-layer network based on edge-based compartmental theory and mean field theory. Subsequently, numerical simulations are performed to validate the model's effectiveness and offer insights for the advancement of information dissemination strategies. The results show that the proportion of active nodes in the network and their active intensities have a significant effect on behavioral propagation. The increase of them can reduce the outbreak threshold of behavioral adoption and expand the scale of behavioral adoption. Additionally, the intensity of local social reinforcement of information reliability has a more significant positive effect on behavioral adoption than global social reinforcement. Moreover, the information threshold of behavioral adoption in the Scale-Free (SF) network is larger than that in the Erdös-Rényi(ER) network.

Suggested Citation

  • Huo, Liang'an & Pan, Mengyu & Wei, Yanhui, 2024. "Impact of individual activity on behavior adoption in complex networks: A two-layer generalized SAR model analysis," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007501
    DOI: 10.1016/j.chaos.2024.115198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jun & Cai, Shimin & Wang, Wei & Zhou, Tao, 2023. "Link cooperation effect of cooperative epidemics on complex networks," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    2. Wang, Wei & Cai, Meng & Zheng, Muhua, 2018. "Social contagions on correlated multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 121-128.
    3. Tomohide Mineyama & Kiichi Tokuoka, 2024. "Does the COVID-19 pandemic change individuals’ risk preference?," Journal of Risk and Uncertainty, Springer, vol. 68(2), pages 163-182, April.
    4. You, Xuemei & Zhang, Man & Ma, Yinghong & Tan, Jipeng & Liu, Zhiyuan, 2023. "Impact of higher-order interactions and individual emotional heterogeneity on information-disease coupled dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Cui, Yajuan & Wei, Ruichen & Tian, Yang & Tian, Hui & Zhu, Xuzhen, 2022. "Information propagation influenced by individual fashion-passion trend on multi-layer weighted network," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Hu, Ping & Geng, Dongqing & Lin, Tao & Ding, Li, 2021. "Coupled propagation dynamics on multiplex activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    7. Yang, Zheng & Wu, Jiao & He, Jiaxu & Xu, Kesheng & Zheng, Muhua, 2023. "Asymmetric inter-layer interactions induce a double transition of information spreading," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    8. Hou, Yunxiang & Lu, Yikang & Dong, Yuting & Jin, Libin & Shi, Lei, 2023. "Impact of different social attitudes on epidemic spreading in activity-driven networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    9. Tian, Yang & Zhu, Xuzhen & Yang, Qiwen & Tian, Hui & Cui, Qimei, 2022. "Propagation characteristic of adoption thresholds heterogeneity in double-layer networks with edge weight distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    10. Keng, Ying Ying & Kwa, Kiam Heong, 2023. "Contagion in social networks: On contagion thresholds," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    11. Gao, Lei & Li, Ruiqi & Shu, Panpan & Wang, Wei & Gao, Hui & Cai, Shimin, 2018. "Effects of individual popularity on information spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 32-39.
    12. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    13. Peng, Hao & Peng, Wangxin & Zhao, Dandan & Wang, Wei, 2020. "Impact of the heterogeneity of adoption thresholds on behavior spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    14. Tian, Yang & Tian, Hui & Cui, Qimei & Zhu, Xuzhen, 2024. "Phase transition phenomena in social propagation with dynamic fashion tendency and individual contact," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    15. Marjon Pol & Deirdre Hennessy & Braden Manns, 2017. "The role of time and risk preferences in adherence to physician advice on health behavior change," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 18(3), pages 373-386, April.
    16. Wang, Zhixiao & Rui, Xiaobin & Yuan, Guan & Cui, Jingjing & Hadzibeganovic, Tarik, 2021. "Endemic information-contagion outbreaks in complex networks with potential spreaders based recurrent-state transmission dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    17. Hu, Yuhan & Pan, Qiuhui & Hou, Wenbing & He, Mingfeng, 2018. "Rumor spreading model with the different attitudes towards rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 331-344.
    18. Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Liang’an & Yu, Yue, 2023. "The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Chen, Ning & Zhu, Xuzhen & Chen, Yanyan, 2019. "Information spreading on complex networks with general group distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 671-676.
    4. Keng, Ying Ying & Kwa, Kiam Heong, 2025. "Contagion probability in linear threshold model," Applied Mathematics and Computation, Elsevier, vol. 487(C).
    5. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    6. Jean Spinks & Son Nghiem & Joshua Byrnes, 2021. "Risky business, healthy lives: how risk perception, risk preferences and information influence consumer’s risky health choices," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 811-831, July.
    7. Chow, Sheung Chi & Vieito, João Paulo & Wong, Wing Keung, 2019. "Do both demand-following and supply-leading theories hold true in developing countries?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 536-554.
    8. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    10. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    11. Delphine Boutin & Laurène Petifour & Haris Megzari, 2022. "Instability of preferences due to Covid-19 Crisis and emotions: a natural experiment from urban Burkina Faso," Working Papers hal-03623601, HAL.
    12. Xie, Xiaoxiao & Huo, Liang’an, 2024. "The coupled dynamics of information-behavior-epidemic propagation considering the heterogeneity of adoption thresholds and network structures in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).
    13. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    14. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    15. Yi, Yinxue & Zhang, Zufan & Gan, Chenquan, 2018. "The effect of social tie on information diffusion in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 783-794.
    16. Müller, Stephan & Rau, Holger A., 2020. "Economic preferences and compliance in the social stress test of the Corona crisis," University of Göttingen Working Papers in Economics 391, University of Goettingen, Department of Economics.
    17. Nwaibeh, E.A. & Chikwendu, C.R., 2023. "A deterministic model of the spread of scam rumor and its numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 111-129.
    18. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The effect of individual attitude on cooperation in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    19. Li, Ling & Dong, Gaogao & Zhu, Huaiping & Tian, Lixin, 2024. "Impact of multiple doses of vaccination on epidemiological spread in multiple networks," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    20. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun, 2024. "A rumor propagation model in multilingual environment with time and state dependent impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.