IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v135y2020ics0960077920301569.html
   My bibliography  Save this article

Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative

Author

Listed:
  • Shah, Kamal
  • Alqudah, Manar A.
  • Jarad, Fahd
  • Abdeljawad, Thabet

Abstract

In this paper, we present semi-analytical solution to Pine Wilt disease (PWD) model under the Caputo–Fabrizio fractional derivative (CFFD). For the proposed solution, we utilize Laplace transform coupled with Adomian decomposition method abbreviated as (LADM). The concerned method is a powerful tool to obtain semi-analytical solution for such type of nonlinear differential equations of fractional order (FODEs) involving non-singular kernel. Furthermore, we give some results for the existence of solution to the proposed model and present numerical results to verify the established analysis.

Suggested Citation

  • Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920301569
    DOI: 10.1016/j.chaos.2020.109754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920301569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abu Arqub, Omar & Maayah, Banan, 2019. "Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 163-170.
    2. Suheil A. Khuri, 2001. "A Laplace decomposition algorithm applied to a class of nonlinear differential equations," Journal of Applied Mathematics, Hindawi, vol. 1, pages 1-15, January.
    3. Atangana, Abdon, 2016. "On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 948-956.
    4. Rahman, Ghaus ur & Shah, Kamal & Haq, Fazal & Ahmad, Naveed, 2018. "Host vector dynamics of pine wilt disease model with convex incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 31-39.
    5. Xiangyun Shi & Guohua Song, 2013. "Analysis of the Mathematical Model for the Spread of Pine Wilt Disease," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-10, March.
    6. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    7. Atangana, Abdon & Gómez-Aguilar, J.F., 2018. "Fractional derivatives with no-index law property: Application to chaos and statistics," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 516-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Hamdi Gassara & Dhouha Kharrat & Abdellatif Ben Makhlouf & Lassaad Mchiri & Mohamed Rhaima, 2023. "SOS Approach for Practical Stabilization of Tempered Fractional-Order Power System," Mathematics, MDPI, vol. 11(13), pages 1-10, July.
    3. Gao, Wei & Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D. G. & Kumar, Pushpendra, 2020. "A new study of unreported cases of 2019-nCOV epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Heydari, M.H. & Razzaghi, M., 2021. "Piecewise Chebyshev cardinal functions: Application for constrained fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Abdo, Mohammed S. & Shah, Kamal & Wahash, Hanan A. & Panchal, Satish K., 2020. "On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    6. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Zheng, Bibo & Wang, Zhanshan, 2022. "Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    8. Shah Hussain & Elissa Nadia Madi & Hasib Khan & Sina Etemad & Shahram Rezapour & Thanin Sitthiwirattham & Nichaphat Patanarapeelert, 2021. "Investigation of the Stochastic Modeling of COVID-19 with Environmental Noise from the Analytical and Numerical Point of View," Mathematics, MDPI, vol. 9(23), pages 1-20, December.
    9. Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "Existence, Uniqueness, and Averaging Principle of Fractional Neutral Stochastic Differential Equations in the L p Space with the Framework of the Ψ-Caputo Derivative," Mathematics, MDPI, vol. 12(7), pages 1-21, March.
    10. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    11. Nazir, Ghazala & Shah, Kamal & Debbouche, Amar & Khan, Rahmat Ali, 2020. "Study of HIV mathematical model under nonsingular kernel type derivative of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Ndenda, J.P. & Njagarah, J.B.H. & Shaw, S., 2021. "Role of immunotherapy in tumor-immune interaction: Perspectives from fractional-order modelling and sensitivity analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    13. Rahman, Mati ur & Ahmad, Saeed & Matoog, R.T. & Alshehri, Nawal A. & Khan, Tahir, 2021. "Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Zhang, Yong & Yu, Xiangnan & Sun, HongGuang & Tick, Geoffrey R. & Wei, Wei & Jin, Bin, 2020. "Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Sabir, Zulqurnain & Said, Salem Ben & Baleanu, Dumitru, 2022. "Swarming optimization to analyze the fractional derivatives and perturbation factors for the novel singular model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    17. Begum, Razia & Tunç, Osman & Khan, Hasib & Gulzar, Haseena & Khan, Aziz, 2021. "A fractional order Zika virus model with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Hussain, Takasar & Aslam, Adnan & Ozair, Muhammad & Tasneem, Fatima & Gómez-Aguilar, J.F., 2021. "Dynamical aspects of pine wilt disease and control measures," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    21. Mashayekhi, S. & Sedaghat, S., 2021. "Fractional model of stem cell population dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Omar Abu Arqub & Mohamed S. Osman & Abdel-Haleem Abdel-Aty & Abdel-Baset A. Mohamed & Shaher Momani, 2020. "A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method," Mathematics, MDPI, vol. 8(6), pages 1-15, June.
    4. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    5. Djennadi, Smina & Shawagfeh, Nabil & Abu Arqub, Omar, 2021. "A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    7. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    8. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    10. Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    11. Khan, Zeshan Aslam & Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor, 2022. "Generalized fractional strategy for recommender systems with chaotic ratings behavior," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    12. Arqub, Omar Abu & Maayah, Banan, 2018. "Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 117-124.
    13. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    14. Koca, Ilknur, 2018. "Efficient numerical approach for solving fractional partial differential equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 278-286.
    15. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    16. Abu Arqub, Omar & Al-Smadi, Mohammed, 2018. "Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 161-167.
    17. Shoaib, Muhammad & Abbasi, Aqsa Zafar & Raja, Muhammad Asif Zahoor & Nisar, Kottakkaran Sooppy, 2022. "A design of predictive computational network for the analysis of fractional epidemical predictor-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    18. Mohammad, Mutaz & Trounev, Alexander, 2020. "Implicit Riesz wavelets based-method for solving singular fractional integro-differential equations with applications to hematopoietic stem cell modeling," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Abu Arqub, Omar & Maayah, Banan, 2019. "Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 163-170.
    20. Yusuf, Abdullahi & Qureshi, Sania & Feroz Shah, Syed, 2020. "Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920301569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.