IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v430y2022ics0096300322003770.html

Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays

Author

Listed:
  • Zheng, Bibo
  • Wang, Zhanshan

Abstract

This paper is devoted to investigating Mittag-Leffler synchronization of fractional-order coupled neural networks (FOCNNs) with mixed delays, where the time-varying delays and infinite distributed delays are both taken into account. Firstly, a universal delayed FOCNNs model is introduced, which includes several FOCNNs with various time delays structures such as distributed delays and constant delays or time-varying delays, as its special cases. Besides, for the case where the existing results cannot be applied to infinite time delays, a generalized fractional-order Halanay inequality is proposed, which facilitates the analysis of synchronization of FOCNNs. Based on the generalized inequality, a unified synchronization analysis framework for FOCNNs is established, which is also applied to the cases with commonly considered FOCNNs with distribute delays, constant or time-varying delays. All the derived synchronization criteria have similar results and can be easily verified. Finally, a numerical example is provided to show the effectiveness of obtained results.

Suggested Citation

  • Zheng, Bibo & Wang, Zhanshan, 2022. "Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003770
    DOI: 10.1016/j.amc.2022.127303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322003770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Fei & Yang, Yongqing, 2018. "Quasi-synchronization for fractional-order delayed dynamical networks with heterogeneous nodes," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 1-14.
    2. Li, Hong-Li & Kao, Yonggui & Hu, Cheng & Jiang, Haijun & Jiang, Yao-Lin, 2021. "Robust exponential stability of fractional-order coupled quaternion-valued neural networks with parametric uncertainties and impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Li, Tao & Tang, Xiaoling & Qian, Wei & Fei, Shumin, 2019. "Hybrid-delay-dependent approach to synchronization in distributed delay neutral neural networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 449-463.
    5. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun & Huang, Junjian, 2018. "Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 105-123.
    6. Zhang, Weiwei & Sha, Chunlin & Cao, Jinde & Wang, Guanglan & Wang, Yuan, 2021. "Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    7. Yu, Xiangnan & Zhang, Yong & Sun, HongGuang & Zheng, Chunmiao, 2018. "Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 306-312.
    8. Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun & Cao, Jinde, 2020. "Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    9. Li, Liangliang & Jian, Jigui, 2015. "Exponential p-convergence analysis for stochastic BAM neural networks with time-varying and infinite distributed delays," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 860-873.
    10. Dang, Rongqi & Chen, Yiming, 2021. "Fractional modelling and numerical simulations of variable-section viscoelastic arches," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Xiaofei & Wu, Huaiqin & Cao, Jinde, 2024. "Finite-time synchronization of impulsive stochastic systems with DoS attacks via dynamic event-triggered control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 573-593.
    2. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Sun, Yuting & Hu, Cheng & Yu, Juan & Shi, Tingting, 2023. "Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    4. Wang, Shasha & Jian, Jigui, 2023. "Predefined-time synchronization of incommensurate fractional-order competitive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yong & Yu, Xiangnan & Sun, HongGuang & Tick, Geoffrey R. & Wei, Wei & Jin, Bin, 2020. "Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    3. Qiu, Lin & Chen, Wen & Wang, Fajie & Lin, Ji, 2019. "A non-local structural derivative model for memristor," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 169-177.
    4. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Zhao, Yongshun & Li, Xiaodi & Cao, Jinde, 2020. "Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    6. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    7. Shu, Jinlong & Wu, Baowei & Xiong, Lianglin, 2022. "Stochastic stability criteria and event-triggered control of delayed Markovian jump quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    8. Duan, Lian & Shi, Min & Huang, Chuangxia & Fang, Xianwen, 2021. "Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Wang, Shuzhan & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    11. Bao, Baizeng & Xu, Liguang, 2025. "Mittag-Leffler ultimate boundedness of fractional-order nonautonomous delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 197(C).
    12. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    13. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Lu, Jiyong & Guo, Yanping & Ji, Yude & Fan, Shuangshuang, 2020. "Finite-time synchronization for different dimensional fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    15. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    16. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Wang, Fei & Zheng, Zhaowen, 2019. "Quasi-projective synchronization of fractional order chaotic systems under input saturation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    18. Jian, Jigui & Wu, Kai & Wang, Baoxian, 2020. "Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    19. Li, Hui & Kao, YongGui & Stamova, Ivanka & Shao, Chuntao, 2021. "Global asymptotic stability and S-asymptotic ω-periodicity of impulsive non-autonomous fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    20. Hussain, Takasar & Aslam, Adnan & Ozair, Muhammad & Tasneem, Fatima & Gómez-Aguilar, J.F., 2021. "Dynamical aspects of pine wilt disease and control measures," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.