Existence, Uniqueness, and Averaging Principle of Fractional Neutral Stochastic Differential Equations in the L p Space with the Framework of the Ψ-Caputo Derivative
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Lili Gao & Litan Yan, 2018. "On Random Periodic Solution to a Neutral Stochastic Functional Differential Equation," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-9, November.
- Mao, Wei & Zhu, Quanxin & Mao, Xuerong, 2015. "Existence, uniqueness and almost surely asymptotic estimations of the solutions to neutral stochastic functional differential equations driven by pure jumps," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 252-265.
- Ahmadova, Arzu & Mahmudov, Nazim I., 2020. "Existence and uniqueness results for a class of fractional stochastic neutral differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Pedjeu, Jean-C. & Ladde, Gangaram S., 2012. "Stochastic fractional differential equations: Modeling, method and analysis," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 279-293.
- Xue Wang & Danfeng Luo & Zhiguo Luo & Akbar Zada, 2021. "Ulam–Hyers Stability of Caputo-Type Fractional Stochastic Differential Equations with Time Delays," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-24, March.
- Aziz Khan & Muhammad Imran Liaqat & Manar A. Alqudah & Thabet Abdeljawad, 2023. "Analysis Of The Conformable Temporal-Fractional Swift–Hohenberg Equation Using A Novel Computational Technique," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(04), pages 1-17.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmadova, Arzu & Mahmudov, Nazim I., 2021. "Strong convergence of a Euler–Maruyama method for fractional stochastic Langevin equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 429-448.
- Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Abdellatif Ben Makhlouf & Lassaad Mchiri & Hakeem A. Othman & Hafedh M. S. Rguigui & Salah Boulaaras, 2023. "Proportional Itô–Doob Stochastic Fractional Order Systems," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
- Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Begum, Razia & Tunç, Osman & Khan, Hasib & Gulzar, Haseena & Khan, Aziz, 2021. "A fractional order Zika virus model with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Ndenda, J.P. & Njagarah, J.B.H. & Shaw, S., 2021. "Role of immunotherapy in tumor-immune interaction: Perspectives from fractional-order modelling and sensitivity analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Linna Liu & Feiqi Deng & Boyang Qu & Yanhong Meng, 2022. "Fundamental Properties of Nonlinear Stochastic Differential Equations," Mathematics, MDPI, vol. 10(15), pages 1-18, July.
- Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Moualkia, Seyfeddine, 2023. "Mathematical analysis of new variant Omicron model driven by Lévy noise and with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Gao, Wei & Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D. G. & Kumar, Pushpendra, 2020. "A new study of unreported cases of 2019-nCOV epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Abdo, Mohammed S. & Shah, Kamal & Wahash, Hanan A. & Panchal, Satish K., 2020. "On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Seyfeddine Moualkia & Yong Xu, 2021. "On the Existence and Uniqueness of Solutions for Multidimensional Fractional Stochastic Differential Equations with Variable Order," Mathematics, MDPI, vol. 9(17), pages 1-12, August.
- Xu, Yan & He, Zhimin & Wang, Peiguang, 2015. "pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 594-605.
- Sabir, Zulqurnain & Said, Salem Ben & Baleanu, Dumitru, 2022. "Swarming optimization to analyze the fractional derivatives and perturbation factors for the novel singular model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Ahmadova, Arzu & Mahmudov, Nazim I., 2021. "Ulam–Hyers stability of Caputo type fractional stochastic neutral differential equations," Statistics & Probability Letters, Elsevier, vol. 168(C).
- Zakaria Ali & Minyahil Abera Abebe & Talat Nazir, 2024. "Strong Convergence of Euler-Type Methods for Nonlinear Fractional Stochastic Differential Equations without Singular Kernel," Mathematics, MDPI, vol. 12(18), pages 1-36, September.
More about this item
Keywords
fractional calculus; Ψ-Caputo derivative; neutral stochastic differential equations; existence and uniqueness; averaging principle;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:1037-:d:1367456. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.