IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v130y2020ics0960077919303534.html
   My bibliography  Save this article

Chaotic characteristic analysis of network traffic time series at different time scales

Author

Listed:
  • Tian, Zhongda

Abstract

Characteristic analysis of network traffic time series is very meaningful for network traffic prediction. The dynamic behavior of network traffic time series is an external manifestation under the combined action of complex non-linear and multi-scale phenomena. Based on the chaotic theory, the chaotic characteristics of network traffic time series collected at different time scales are analyzed and discussed. Firstly, power spectral density analysis and autocorrelation function analysis are introduced. The results show that the power spectral density of network traffic has continuous broad spectrum, which qualitatively explains the chaotic behavior of network traffic. The value of autocorrelation function of network traffic decreases with time delay, which shows its short-term predictability. Calculations on scaling exponent show that network traffic is scale-free at different time scales. Then, Hurst index of network traffic is calculated, and the 0-1 test algorithm for chaos is used to calculate the incremental growth rate of network traffic time series. The variation of chaotic characteristics of network traffic at different time scales is discussed. Further, the phase space of network traffic time series at different time scales is reconstructed, and the correlation dimension, largest Lyapunov exponent, and Kolmogorov entropy are calculated respectively. These chaotic identification indexes are used to analyze the chaotic characteristics of network traffic and their variation with time scales. The results show that the relationship between the time scale and the non-linear characteristics of network traffic time series is not obvious. The incremental growth rate of network traffic time series has no obvious change with the increase of time scale. There is no clear relationship between the change of time scale and embedding dimension and delay time. The largest Lyapunov exponent show that the network traffic at different time scales has different maximum predictable time. At the same time, Kolmogorov entropy increase with the increase of time scale, which means that the chaotic characteristics of network traffic time series become stronger and the predictability becomes worse with the time scale.

Suggested Citation

  • Tian, Zhongda, 2020. "Chaotic characteristic analysis of network traffic time series at different time scales," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303534
    DOI: 10.1016/j.chaos.2019.109412
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Ran & Yuqin Li & Changchun Wang, 2018. "Chaos and Complexity Analysis of a Discrete Permanent-Magnet Synchronous Motor System," Complexity, Hindawi, vol. 2018, pages 1-8, December.
    2. Alberto Mozo & Bruno Ordozgoiti & Sandra Gómez-Canaval, 2018. "Forecasting short-term data center network traffic load with convolutional neural networks," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-31, February.
    3. Zheng, Lingwei & Liu, Zhaokun & Shen, Junnan & Wu, Chenxi, 2018. "Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output," Applied Energy, Elsevier, vol. 229(C), pages 1128-1139.
    4. Jie Cao & Zhiyi Fang & Guannan Qu & Hongyu Sun & Dan Zhang, 2017. "An accurate traffic classification model based on support vector machines," International Journal of Network Management, John Wiley & Sons, vol. 27(1), January.
    5. Rongsheng Liu & Minfang Peng & Xianghui Xiao, 2018. "Ultra-Short-Term Wind Power Prediction Based on Multivariate Phase Space Reconstruction and Multivariate Linear Regression," Energies, MDPI, vol. 11(10), pages 1-17, October.
    6. Mukherjee, Somenath & Ray, Rajdeep & Samanta, Rajkumar & Khondekar, Mofazzal H. & Sanyal, Goutam, 2017. "Nonlinearity and chaos in wireless network traffic," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 23-29.
    7. Dlask, Martin & Kukal, Jaromir, 2017. "Application of rotational spectrum for correlation dimension estimation," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 256-262.
    8. Shaw, Pankaj Kumar & Chaubey, Neeraj & Mukherjee, S. & Janaki, M.S. & Iyengar, A.N. Sekar, 2019. "A continuous transition from chaotic bursting to chaotic spiking in a glow discharge plasma and its associated long range correlation to anti correlation behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 126-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Tang, Li-Hong & Bai, Yu-Long & Yang, Jie & Lu, Ya-Ni, 2020. "A hybrid prediction method based on empirical mode decomposition and multiple model fusion for chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Wang, Jujie & Cui, Quan & He, Maolin, 2022. "Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    2. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    3. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    4. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    5. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    6. Kambombo Mtonga & Santhi Kumaran & Chomora Mikeka & Kayalvizhi Jayavel & Jimmy Nsenga, 2019. "Machine Learning-Based Patient Load Prediction and IoT Integrated Intelligent Patient Transfer Systems," Future Internet, MDPI, vol. 11(11), pages 1-24, November.
    7. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    8. Zhang, Shaohua & Wang, Cong & Zhang, Hongli & Ma, Ping & Li, Xinkai, 2022. "Dynamic analysis and bursting oscillation control of fractional-order permanent magnet synchronous motor system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Jian Yang & Yu Liu & Shangguang Jiang & Yazhou Luo & Nianzhang Liu & Deping Ke, 2022. "A Method of Probability Distribution Modeling of Multi-Dimensional Conditions for Wind Power Forecast Error Based on MNSGA-II-Kmeans," Energies, MDPI, vol. 15(7), pages 1-21, March.
    10. Dlask, Martin & Kukal, Jaromir, 2022. "Hurst exponent estimation of fractional surfaces for mammogram images analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    11. Ai, Chunyu & He, Shan & Fan, Xiaochao & Wang, Weiqing, 2023. "Chaotic time series wind power prediction method based on OVMD-PE and improved multi-objective state transition algorithm," Energy, Elsevier, vol. 278(C).
    12. Rao, Xiao-Bo & Zhao, Xu-Ping & Chu, Yan-Dong & Zhang, Jian-Gang & Gao, Jian-She, 2020. "The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Xingsheng Shu & Wei Ding & Yong Peng & Ziru Wang & Jian Wu & Min Li, 2021. "Monthly Streamflow Forecasting Using Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5089-5104, December.
    14. Chenhua Ni & Xiandong Ma, 2018. "Prediction of Wave Power Generation Using a Convolutional Neural Network with Multiple Inputs," Energies, MDPI, vol. 11(8), pages 1-18, August.
    15. Muhammad Shahzad Nazir & Fahad Alturise & Sami Alshmrany & Hafiz. M. J Nazir & Muhammad Bilal & Ahmad N. Abdalla & P. Sanjeevikumar & Ziad M. Ali, 2020. "Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    16. Cheng, Zeyang & Wang, Wei & Lu, Jian & Xing, Xue, 2020. "Classifying the traffic state of urban expressways: A machine-learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 411-428.
    17. Shuoben Bi & Cong Yuan & Shaoli Liu & Luye Wang & Lili Zhang, 2022. "Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    18. García, P., 2022. "A machine learning based control of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. Wang, Chun & Zhang, Weihua & Wu, Cong & Hu, Heng & Ding, Heng & Zhu, Wenjia, 2022. "A traffic state recognition model based on feature map and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    20. Dlask, Martin & Kukal, Jaromir, 2018. "Translation and rotation invariant method of Renyi dimension estimation," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 536-541.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.