IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics096007792030429x.html
   My bibliography  Save this article

The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees

Author

Listed:
  • Rao, Xiao-Bo
  • Zhao, Xu-Ping
  • Chu, Yan-Dong
  • Zhang, Jian-Gang
  • Gao, Jian-She

Abstract

We report the topology of stable periodic solutions of an SIR epidemic dynamics model with impulsive vaccination control, a hybrid discrete/continuous non-smooth system, in the parameter plane spanned by the pulse period T and the quantity of pulse vaccination b. This mode-locking topology is governed by an invariant torus (a pair of frequencies) initiated from Hopf bifurcations rather than the fast-slow time scales, and its periodicity is in perfect agreement with the so-called Stern-Brocot sum tree, a derived tree from “Farey algorithm”. More surprisingly, the mode-locking order is unfolded in a way that never encountered before to emerge organized according to the reciprocal of the Stern-Brocot sum tree. Furthermore, the global organization of mode-locking is not isolated structure but an infinite Stern-Brocot sum tree cascade when tuning the control parameter T. The results obtained contribute a new framework to classify mode-locking oscillations observed in the hybrid system.

Suggested Citation

  • Rao, Xiao-Bo & Zhao, Xu-Ping & Chu, Yan-Dong & Zhang, Jian-Gang & Gao, Jian-She, 2020. "The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s096007792030429x
    DOI: 10.1016/j.chaos.2020.110031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030429X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wiggers, Vinícius & Rech, Paulo C., 2017. "Multistability and organization of periodicity in a Van der Pol–Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 632-637.
    2. Anderson Hoff & Juliana Santos & Cesar Manchein & Holokx Albuquerque, 2014. "Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    3. Zeng, Guang Zhao & Chen, Lan Sun & Sun, Li Hua, 2005. "Complexity of an SIR epidemic dynamics model with impulsive vaccination control," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 495-505.
    4. Gallas, Jason A.C., 1994. "Dissecting shrimps: results for some one-dimensional physical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 202(1), pages 196-223.
    5. Rao, Xiao-Bo & Chu, Yan-Dong & Chang, Ying-Xiang & Zhang, Jian-Gang, 2018. "Broken Farey tree and fractal in a hexagonal centrifugal governor with a spring," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 251-255.
    6. Shaw, Pankaj Kumar & Chaubey, Neeraj & Mukherjee, S. & Janaki, M.S. & Iyengar, A.N. Sekar, 2019. "A continuous transition from chaotic bursting to chaotic spiking in a glow discharge plasma and its associated long range correlation to anti correlation behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 126-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Medeiros, E.S. & de Souza, S.L.T. & Medrano-T, R.O. & Caldas, I.L., 2011. "Replicate periodic windows in the parameter space of driven oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 982-989.
    2. N. C. Pati, 2023. "Bifurcations and multistability in a physically extended Lorenz system for rotating convection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-15, August.
    3. Gallas, Jason A.C., 1995. "Units: Remarkable points in dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 222(1), pages 125-151.
    4. Meng, Xinzhu & Jiao, Jianjun & Chen, Lansun, 2009. "Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2114-2125.
    5. Gakkhar, Sunita & Negi, Kuldeep, 2008. "Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 626-638.
    6. Oliveira, Diego F.M. & Leonel, Edson D., 2014. "Statistical and dynamical properties of a dissipative kicked rotator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 498-514.
    7. Xingjie Wu & Wei Du & Genan Pan & Wentao Huang, 2013. "The dynamical behaviors of a Ivlev-type two-prey two-predator system with impulsive effect," Indian Journal of Pure and Applied Mathematics, Springer, vol. 44(1), pages 1-27, February.
    8. Wang, Guowei & Yu, Dong & Ding, Qianming & Li, Tianyu & Jia, Ya, 2021. "Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    9. Xie, Yingkang & Wang, Zhen, 2022. "A ratio-dependent impulsive control of an SIQS epidemic model with non-linear incidence," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    10. Liu, Cui & He, Rui-chun & Zhou, Wei & Li, Hui, 2021. "Dynamic analysis of airline bidding game based on nonlinear cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    11. Wang, Fengyan & Zeng, Guangzhao, 2007. "Chaos in a Lotka–Volterra predator–prey system with periodically impulsive ratio-harvesting the prey and time delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1499-1512.
    12. Tian, Zhongda, 2020. "Chaotic characteristic analysis of network traffic time series at different time scales," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    13. Liu, Zhijun & Tan, Ronghua, 2007. "Impulsive harvesting and stocking in a Monod–Haldane functional response predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 454-464.
    14. de Souza, S.L.T. & Batista, A.M. & Baptista, M.S. & Caldas, I.L. & Balthazar, J.M., 2017. "Characterization in bi-parameter space of a non-ideal oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 224-231.
    15. Das, Saureesh, 2022. "Recurrence quantification and bifurcation analysis of electrical activity in resistive/memristive synapse coupled Fitzhugh–Nagumo type neurons," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    16. Ye, Weijie, 2020. "Dynamics of a revised neural mass model in the stop-signal task," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Yang, Yanling & Wang, Qiubao, 2023. "Capture of stochastic P-bifurcation in a delayed mechanical centrifugal governor," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    18. Imane Abouelkheir & Fadwa El Kihal & Mostafa Rachik & Ilias Elmouki, 2019. "Optimal Impulse Vaccination Approach for an SIR Control Model with Short-Term Immunity," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    19. Han, Haoming & Zhang, Jing & Liu, Yan, 2023. "Stability analysis of hybrid high-order nonlinear multiple time-delayed coupled systems via aperiodically intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. Wen, Luosheng & Yang, Xiaofan, 2008. "Global stability of a delayed SIRS model with temporary immunity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 221-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s096007792030429x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.