IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v229y2018icp1128-1139.html
   My bibliography  Save this article

Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output

Author

Listed:
  • Zheng, Lingwei
  • Liu, Zhaokun
  • Shen, Junnan
  • Wu, Chenxi

Abstract

Photovoltaic (PV) power generation varies randomly and intermittently with respect to the weather. For a microgrid with PV sources, this fluctuation not only affects the necessary configuration of the energy-storage capacity chosen in microgrid planning and design but also influences the microgrid operation. Consequently, accurately forecasting the PV output is crucial. For the operation of a PV-dominated microgrid, a new method for very short-term (VST) forecasting based on the maximum Lyapunov exponent (MLE) is proposed. First, historical power-generation data are divided into three weather conditions: sunny, cloudy, and rainy days. Then, a PV output series for the different weather conditions is constructed, and the chaotic characteristic is verified by reconstructing an attractor graph and calculating the MLE. Finally, using the MLE method, the PV generation under different historical weather conditions is forecasted. The raw output time series are measured data from a demonstration system installed on the rooftop of Building 6 at Hangzhou Dianzi University, China. The forecasting accuracy is evaluated using several statistical metrics and compared with that of forecasts obtained via the widely used auto-regression approach. Comparing the forecasts indicates that the MLE-based method is statistically but not universally more accurate for VST forecasting.

Suggested Citation

  • Zheng, Lingwei & Liu, Zhaokun & Shen, Junnan & Wu, Chenxi, 2018. "Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output," Applied Energy, Elsevier, vol. 229(C), pages 1128-1139.
  • Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:1128-1139
    DOI: 10.1016/j.apenergy.2018.08.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918312285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abarbanel, Henry D.I. & Lall, Upmanu & Moon, Young-Il & Mann, Michael E. & Sangoyomi, Taiye, 1996. "Nonlinear dynamics and the Great Salt Lake: A predictable indicator of regional climate," Energy, Elsevier, vol. 21(7), pages 655-665.
    2. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    3. Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
    4. Yang, Xiuyuan & Xu, Minglu & Xu, Shouchen & Han, Xiaojuan, 2017. "Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining," Applied Energy, Elsevier, vol. 206(C), pages 683-696.
    5. Walter Richardson & Hariharan Krishnaswami & Rolando Vega & Michael Cervantes, 2017. "A Low Cost, Edge Computing, All-Sky Imager for Cloud Tracking and Intra-Hour Irradiance Forecasting," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    6. Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
    7. Vasallo, Manuel Jesús & Bravo, José Manuel, 2016. "A MPC approach for optimal generation scheduling in CSP plants," Applied Energy, Elsevier, vol. 165(C), pages 357-370.
    8. Hodge, Bri-Mathias & Brancucci Martinez-Anido, Carlo & Wang, Qin & Chartan, Erol & Florita, Anthony & Kiviluoma, Juha, 2018. "The combined value of wind and solar power forecasting improvements and electricity storage," Applied Energy, Elsevier, vol. 214(C), pages 1-15.
    9. Ogliari, Emanuele & Dolara, Alberto & Manzolini, Giampaolo & Leva, Sonia, 2017. "Physical and hybrid methods comparison for the day ahead PV output power forecast," Renewable Energy, Elsevier, vol. 113(C), pages 11-21.
    10. Li, Yanting & He, Yong & Su, Yan & Shu, Lianjie, 2016. "Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines," Applied Energy, Elsevier, vol. 180(C), pages 392-401.
    11. Ferlito, S. & Adinolfi, G. & Graditi, G., 2017. "Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production," Applied Energy, Elsevier, vol. 205(C), pages 116-129.
    12. Antonello Rosato & Rosa Altilio & Rodolfo Araneo & Massimo Panella, 2017. "Prediction in Photovoltaic Power by Neural Networks," Energies, MDPI, vol. 10(7), pages 1-25, July.
    13. Barbieri, Florian & Rajakaruna, Sumedha & Ghosh, Arindam, 2017. "Very short-term photovoltaic power forecasting with cloud modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 242-263.
    14. Utpal Kumar Das & Kok Soon Tey & Mehdi Seyedmahmoudian & Mohd Yamani Idna Idris & Saad Mekhilef & Ben Horan & Alex Stojcevski, 2017. "SVR-Based Model to Forecast PV Power Generation under Different Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-17, June.
    15. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    16. Li, Qian & Wu, Zhou & Xia, Xiaohua, 2018. "Estimate and characterize PV power at demand-side hybrid system," Applied Energy, Elsevier, vol. 218(C), pages 66-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Yinpeng & Xu, Jian & Sun, Yuanzhang & Liu, Dan, 2021. "A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting," Applied Energy, Elsevier, vol. 304(C).
    2. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    3. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    4. Tian, Zhongda, 2020. "Chaotic characteristic analysis of network traffic time series at different time scales," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Ai, Chunyu & He, Shan & Fan, Xiaochao & Wang, Weiqing, 2023. "Chaotic time series wind power prediction method based on OVMD-PE and improved multi-objective state transition algorithm," Energy, Elsevier, vol. 278(C).
    6. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    7. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    8. Artun Sel & Bilgehan Sel & Cosku Kasnakoglu, 2021. "GLSDC Based Parameter Estimation Algorithm for a PMSM Model," Energies, MDPI, vol. 14(3), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    2. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    3. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    4. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    5. Thi Ngoc Nguyen & Felix Musgens, 2021. "What drives the accuracy of PV output forecasts?," Papers 2111.02092, arXiv.org.
    6. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    7. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.
    8. Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).
    9. Martina Radicioni & Valentina Lucaferri & Francesco De Lia & Antonino Laudani & Roberto Lo Presti & Gabriele Maria Lozito & Francesco Riganti Fulginei & Riccardo Schioppo & Mario Tucci, 2021. "Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center," Energies, MDPI, vol. 14(3), pages 1-22, January.
    10. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
    11. Rodríguez, Fermín & Galarza, Ainhoa & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control," Energy, Elsevier, vol. 239(PB).
    12. Qu, Yinpeng & Xu, Jian & Sun, Yuanzhang & Liu, Dan, 2021. "A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting," Applied Energy, Elsevier, vol. 304(C).
    13. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. María Carmen Ruiz-Abellón & Luis Alfredo Fernández-Jiménez & Antonio Guillamón & Alberto Falces & Ana García-Garre & Antonio Gabaldón, 2019. "Integration of Demand Response and Short-Term Forecasting for the Management of Prosumers’ Demand and Generation," Energies, MDPI, vol. 13(1), pages 1-31, December.
    15. Guilherme Fonseca Bassous & Rodrigo Flora Calili & Carlos Hall Barbosa, 2021. "Development of a Low-Cost Data Acquisition System for Very Short-Term Photovoltaic Power Forecasting," Energies, MDPI, vol. 14(19), pages 1-28, September.
    16. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    17. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    18. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    20. Anagnostos, D. & Schmidt, T. & Cavadias, S. & Soudris, D. & Poortmans, J. & Catthoor, F., 2019. "A method for detailed, short-term energy yield forecasting of photovoltaic installations," Renewable Energy, Elsevier, vol. 130(C), pages 122-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:229:y:2018:i:c:p:1128-1139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.