Reasoning with financial regulatory texts via Large Language Models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jbef.2025.101067
Download full text from publisher
References listed on IDEAS
- Juan de Lucio & Juan S. Mora-Sanguinetti, 2021. "New dimensions of regulatory complexity and their economic cost. An analysis using text mining," Working Papers 2107, Banco de España.
- Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
- Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Gregory, Gadzinski & Vito, Liuzzi, 2024. "ChatGPT: A canary in the coal mine or a parrot in the echo chamber? Detecting fraud with LLM: The case of FTX," Finance Research Letters, Elsevier, vol. 70(C).
- Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2019. "Pricing and hedging American-style options with deep learning," Papers 1912.11060, arXiv.org, revised Jul 2020.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Daniel K. Tarullo, 2019. "Financial Regulation: Still Unsettled a Decade after the Crisis," Journal of Economic Perspectives, American Economic Association, vol. 33(1), pages 61-80, Winter.
- Ixandra Achitouv & Dragos Gorduza & Antoine Jacquier, 2023. "Natural Language Processing for Financial Regulation," Papers 2311.08533, arXiv.org.
- Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
- Zhiyu Cao & Zachary Feinstein, 2024. "Large Language Model in Financial Regulatory Interpretation," Papers 2405.06808, arXiv.org, revised Jul 2024.
- Shanmuganathan, Manchuna, 2020. "Behavioural finance in an era of artificial intelligence: Longitudinal case study of robo-advisors in investment decisions," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Ross Levine, 2012.
"The Governance of Financial Regulation: Reform Lessons from the Recent Crisis,"
International Review of Finance, International Review of Finance Ltd., vol. 12(1), pages 39-56, March.
- Ross Levine, 2010. "The governance of financial regulation: reform lessons from the recent crisis," BIS Working Papers 329, Bank for International Settlements.
- Zhou, Ying & Li, Haoran & Xiao, Zhi & Qiu, Jing, 2023. "A user-centered explainable artificial intelligence approach for financial fraud detection," Finance Research Letters, Elsevier, vol. 58(PA).
- Ludivia Hernandez Aros & Luisa Ximena Bustamante Molano & Fernando Gutierrez-Portela & John Johver Moreno Hernandez & Mario Samuel Rodríguez Barrero, 2024. "Financial fraud detection through the application of machine learning techniques: a literature review," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-22, December.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Horobet, Alexandra & Boubaker, Sabri & Belascu, Lucian & Negreanu, Cristina Carmencita & Dinca, Zeno, 2024. "Technology-driven advancements: Mapping the landscape of algorithmic trading literature," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
- Gang Kou & Yang Lu, 2025. "FinTech: a literature review of emerging financial technologies and applications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-34, December.
- Karim, Sitara & Shafiullah, Muhammad & Naeem, Muhammad Abubakr, 2024. "When one domino falls, others follow: A machine learning analysis of extreme risk spillovers in developed stock markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
- Li, Yu & Zhong, Huiyi & Tong, Qiye, 2024. "Artificial intelligence, dynamic capabilities, and corporate financial asset allocation," International Review of Financial Analysis, Elsevier, vol. 96(PB).
- Chen, Zhenhua & Liu, Zhenya & Teka, Hanen & Zhang, Yifan, 2022. "Smart money in China's A-share market: Evidence from big data," Research in International Business and Finance, Elsevier, vol. 61(C).
- Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
- Joao Vitor Matos Goncalves & Michel Alexandre & Gilberto Tadeu Lima, 2023. "ARIMA and LSTM: A Comparative Analysis of Financial Time Series Forecasting," Working Papers, Department of Economics 2023_13, University of São Paulo (FEA-USP).
- Yuan Zhao & Xue Gong & Weiguo Zhang & Weijun Xu, 2025. "Stock return forecasting based on the proxy variables of category factors," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-48, December.
- Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Michalski, Lachlan & Low, Rand Kwong Yew, 2024. "Determinants of corporate credit ratings: Does ESG matter?," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Shuangshuang Fan & Yichao Li & William Mbanyele & Xiufeng Lai, 2025. "Determinants and Pathways for Inclusive Growth in China: Investigation Based on Artificial Intelligence (AI) Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1231-1264, March.
- Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023.
"A penalized two-pass regression to predict stock returns with time-varying risk premia,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2021. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Swiss Finance Institute Research Paper Series 21-09, Swiss Finance Institute.
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Post-Print hal-04325655, HAL.
- Gaetan Bakalli & St'ephane Guerrier & Olivier Scaillet, 2022. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Papers 2208.00972, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Gao, Daquan & Li, Songsong & Tian, Zhihong, 2025. "Geopolitical risk, energy market volatility, and corporate energy dependence: The role of green Total factor productivity and decentralized top management team network," Energy Economics, Elsevier, vol. 148(C).
- Malakhov, Alexey & Riley, Timothy B. & Yan, Qing, 2024. "Do hedge funds bet against beta?," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1507-1525.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:beexfi:v:47:y:2025:i:c:s2214635025000486. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-behavioral-and-experimental-finance .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/beexfi/v47y2025ics2214635025000486.html