IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.11060.html
   My bibliography  Save this paper

Pricing and hedging American-style options with deep learning

Author

Listed:
  • Sebastian Becker
  • Patrick Cheridito
  • Arnulf Jentzen

Abstract

In this paper we introduce a deep learning method for pricing and hedging American-style options. It first computes a candidate optimal stopping policy. From there it derives a lower bound for the price. Then it calculates an upper bound, a point estimate and confidence intervals. Finally, it constructs an approximate dynamic hedging strategy. We test the approach on different specifications of a Bermudan max-call option. In all cases it produces highly accurate prices and dynamic hedging strategies with small replication errors.

Suggested Citation

  • Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2019. "Pricing and hedging American-style options with deep learning," Papers 1912.11060, arXiv.org, revised Jul 2020.
  • Handle: RePEc:arx:papers:1912.11060
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.11060
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco G'omez Casanova & 'Alvaro Leitao & Fernando de Lope Contreras & Carlos V'azquez, 2024. "Deep Joint Learning valuation of Bermudan Swaptions," Papers 2404.11257, arXiv.org.
    2. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    3. Matteo Gambara & Giulia Livieri & Andrea Pallavicini, 2023. "Machine learning methods for American-style path-dependent contracts," Papers 2311.16762, arXiv.org.
    4. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    6. John Ery & Loris Michel, 2021. "Solving optimal stopping problems with Deep Q-Learning," Papers 2101.09682, arXiv.org.
    7. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2023. "Backward Hedging for American Options with Transaction Costs," Papers 2305.06805, arXiv.org, revised Jun 2023.
    8. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Apr 2024.
    9. Phillip Murray & Ben Wood & Hans Buehler & Magnus Wiese & Mikko S. Pakkanen, 2022. "Deep Hedging: Continuous Reinforcement Learning for Hedging of General Portfolios across Multiple Risk Aversions," Papers 2207.07467, arXiv.org.
    10. Nader Karimi & Erfan Salavati & Hirbod Assa & Hojatollah Adibi, 2023. "Sensitivity Analysis of Optimal Commodity Decision Making with Neural Networks: A Case for COVID-19," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
    11. Riccardo Aiolfi & Nicola Moreni & Marco Bianchetti & Marco Scaringi & Filippo Fogliani, 2021. "Learning Bermudans," Papers 2105.00655, arXiv.org.
    12. Beatriz Salvador & Cornelis W. Oosterlee & Remco van der Meer, 2020. "Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    13. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Neural Optimal Stopping Boundary," Papers 2205.04595, arXiv.org, revised May 2023.
    14. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2022. "Deep learning and American options via free boundary framework," Papers 2211.11803, arXiv.org, revised Dec 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.
    2. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    3. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    4. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    5. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    6. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    7. Rutger-Jan Lange & Coen Teulings, 2018. "The option value of vacant land and the optimal timing of city extensions," Tinbergen Institute Discussion Papers 18-033/III, Tinbergen Institute.
    8. Gilles Pag`es & Benedikt Wilbertz, 2011. "GPGPUs in computational finance: Massive parallel computing for American style options," Papers 1101.3228, arXiv.org.
    9. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2020. "New Weak Error bounds and expansions for Optimal Quantization," Post-Print hal-02361644, HAL.
    10. Tao Chen & Mike Ludkovski & Moritz Vo{ss}, 2022. "On Parametric Optimal Execution and Machine Learning Surrogates," Papers 2204.08581, arXiv.org, revised Oct 2023.
    11. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    12. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
    13. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2019. "New Weak Error bounds and expansions for Optimal Quantization," Working Papers hal-02361644, HAL.
    14. Georg Pflug & Alois Pichler, 2015. "Dynamic generation of scenario trees," Computational Optimization and Applications, Springer, vol. 62(3), pages 641-668, December.
    15. Polynice Oyono Ngou & Cody Hyndman, 2014. "A Fourier interpolation method for numerical solution of FBSDEs: Global convergence, stability, and higher order discretizations," Papers 1410.8595, arXiv.org, revised May 2022.
    16. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Apr 2024.
    17. Anna Battauz & Francesco Rotondi, 2022. "American options and stochastic interest rates," Computational Management Science, Springer, vol. 19(4), pages 567-604, October.
    18. Qiang Han & Shaolin Ji, 2022. "A Multi-Step Algorithm for BSDEs Based On a Predictor-Corrector Scheme and Least-Squares Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2403-2426, December.
    19. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    20. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & J'er^ome Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Papers 2201.02587, arXiv.org, revised Jun 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.11060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.