My bibliography
Save this item
Pricing and hedging American-style options with deep learning
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2025. "Backward hedging for American options with transaction costs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 48(1), pages 541-569, June.
- Francisco G'omez Casanova & 'Alvaro Leitao & Fernando de Lope Contreras & Carlos V'azquez, 2024. "Deep Joint Learning valuation of Bermudan Swaptions," Papers 2404.11257, arXiv.org.
- Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
- Matteo Gambara & Giulia Livieri & Andrea Pallavicini, 2025.
"Machine-learning regression methods for American-style path-dependent contracts,"
Quantitative Finance, Taylor & Francis Journals, vol. 25(6), pages 895-918, June.
- Matteo Gambara & Giulia Livieri & Andrea Pallavicini, 2023. "Machine-learning regression methods for American-style path-dependent contracts," Papers 2311.16762, arXiv.org, revised Jul 2025.
- Gambara, Matteo & Livieri, Giulia & Pallavicini, Andrea, 2025. "Machine-learning regression methods for American-style path-dependent contracts," LSE Research Online Documents on Economics 128600, London School of Economics and Political Science, LSE Library.
- Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2025. "Computing XVA for American basket derivatives by machine learning techniques," Computational Management Science, Springer, vol. 22(2), pages 1-33, December.
- Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
- Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.
- John Ery & Loris Michel, 2021. "Solving optimal stopping problems with Deep Q-Learning," Papers 2101.09682, arXiv.org, revised Jun 2024.
- Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2024. "Deep Learning and American Options via Free Boundary Framework," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 979-1022, August.
- Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2023. "Backward Hedging for American Options with Transaction Costs," Papers 2305.06805, arXiv.org, revised Jun 2023.
- Jasper Rou, 2025. "Time Deep Gradient Flow Method for pricing American options," Papers 2507.17606, arXiv.org.
- Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
- Hao Zhou & Duy-Minh Dang, 2024. "Numerical analysis of American option pricing in a two-asset jump-diffusion model," Papers 2410.04745, arXiv.org, revised Apr 2025.
- Phillip Murray & Ben Wood & Hans Buehler & Magnus Wiese & Mikko S. Pakkanen, 2022. "Deep Hedging: Continuous Reinforcement Learning for Hedging of General Portfolios across Multiple Risk Aversions," Papers 2207.07467, arXiv.org.
- Nader Karimi & Erfan Salavati & Hirbod Assa & Hojatollah Adibi, 2023. "Sensitivity Analysis of Optimal Commodity Decision Making with Neural Networks: A Case for COVID-19," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
- Balint Negyesi & Cornelis W. Oosterlee, 2025. "A deep BSDE approach for the simultaneous pricing and delta-gamma hedging of large portfolios consisting of high-dimensional multi-asset Bermudan options," Papers 2502.11706, arXiv.org.
- Riccardo Aiolfi & Nicola Moreni & Marco Bianchetti & Marco Scaringi, 2024.
"Learning Bermudans,"
Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2813-2852, November.
- Riccardo Aiolfi & Nicola Moreni & Marco Bianchetti & Marco Scaringi & Filippo Fogliani, 2021. "Learning Bermudans," Papers 2105.00655, arXiv.org.
- Min Dai & Yu Sun & Zuo Quan Xu & Xun Yu Zhou, 2024. "Learning to Optimally Stop Diffusion Processes, with Financial Applications," Papers 2408.09242, arXiv.org, revised Aug 2025.
- Beatriz Salvador & Cornelis W. Oosterlee & Remco van der Meer, 2020.
"Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks,"
Mathematics, MDPI, vol. 9(1), pages 1-20, December.
- Beatriz Salvador & Cornelis W. Oosterlee & Remco van der Meer, 2020. "Financial option valuation by unsupervised learning with artificial neural networks," Papers 2005.12059, arXiv.org.
- Jiefei Yang & Guanglian Li, 2024. "Gradient-enhanced sparse Hermite polynomial expansions for pricing and hedging high-dimensional American options," Papers 2405.02570, arXiv.org, revised Aug 2025.
- A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Neural Optimal Stopping Boundary," Papers 2205.04595, arXiv.org, revised May 2023.
- Jiefei Yang & Guanglian Li, 2024. "A deep primal-dual BSDE method for optimal stopping problems," Papers 2409.06937, arXiv.org.
- Kenjiro Oya, 2024. "Deep Hedging Bermudan Swaptions," Papers 2411.10079, arXiv.org.
- Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2022. "Deep learning and American options via free boundary framework," Papers 2211.11803, arXiv.org, revised Dec 2022.
- Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
Printed from https://ideas.repec.org/r/arx/papers/1912.11060.html