IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v22y2025i2d10.1007_s10287-025-00540-7.html
   My bibliography  Save this article

Computing XVA for American basket derivatives by machine learning techniques

Author

Listed:
  • Ludovic Goudenège

    (Université Paris-Saclay Évry)

  • Andrea Molent

    (Università degli Studi di Udine)

  • Antonino Zanette

    (Università degli Studi di Udine)

Abstract

Total value adjustment (XVA) is the change in value to be added to the price of a derivative to account for the bilateral default risk and the funding costs. In this paper, we compute such a premium for American basket derivatives whose payoff depends on multiple underlyings. In particular, in our model, those underlyings are supposed to follow the multidimensional Black-Scholes stochastic model. In order to determine the XVA, we follow the approach introduced by (Burgard and Kjaer in SSRN Electronic J 7:1–19, 2010) and afterward applied by (Arregui et al. in Appl Math Comput 308:31–53, 2017), (Arregui et al. in Int J Comput Math 96:2157–2176, 2019) for the one-dimensional American derivatives. The evaluation of the XVA for basket derivatives is particularly challenging as the presence of several underlings leads to a high-dimensional control problem. We tackle such an obstacle by resorting to Gaussian Process Regression, a machine learning technique that allows one to address the curse of dimensionality effectively. Moreover, the use of numerical techniques, such as control variates, turns out to be a powerful tool to improve the accuracy of the proposed methods. The paper includes the results of several numerical experiments that confirm the goodness of the proposed methodologies.

Suggested Citation

  • Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2025. "Computing XVA for American basket derivatives by machine learning techniques," Computational Management Science, Springer, vol. 22(2), pages 1-33, December.
  • Handle: RePEc:spr:comgts:v:22:y:2025:i:2:d:10.1007_s10287-025-00540-7
    DOI: 10.1007/s10287-025-00540-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-025-00540-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-025-00540-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. BRIGO, Damiano & VRINS, Frédéric, 2018. "Disentangling wrong-way risk: pricing credit valuation adjustment via change of measures," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1154-1164.
    2. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    3. Stéphane Crépey & Matthew F Dixon, 2020. "Gaussian process regression for derivative portfolio modeling and application to credit valuation adjustment computations," Post-Print hal-03910109, HAL.
    4. Arregui, Iñigo & Salvador, Beatriz & Vázquez, Carlos, 2017. "PDE models and numerical methods for total value adjustment in European and American options with counterparty risk," Applied Mathematics and Computation, Elsevier, vol. 308(C), pages 31-53.
    5. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
    6. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    7. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    8. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2019. "Pricing and hedging American-style options with deep learning," Papers 1912.11060, arXiv.org, revised Jul 2020.
    9. Jérôme Lelong, 2018. "Dual pricing of American options by Wiener chaos expansion," Post-Print hal-01299819, HAL.
    10. Bernard Lapeyre & Jérôme Lelong, 2021. "Neural network regression for Bermudan option pricing," Post-Print hal-02183587, HAL.
    11. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    12. Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
    13. Eckhard Platen & David Heath, 2006. "A Benchmark Approach to Quantitative Finance," Springer Finance, Springer, number 978-3-540-47856-0, October.
    14. Ballotta, Laura & Fusai, Gianluca & Marazzina, Daniele, 2019. "Integrated structural approach to Credit Value Adjustment," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1143-1157.
    15. Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2022. "Approximate value adjustments for European claims," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1149-1161.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludovic Goudenege & Andrea Molent & Antonino Zanette, 2022. "Computing XVA for American basket derivatives by Machine Learning techniques," Papers 2209.06485, arXiv.org.
    2. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    3. Jiefei Yang & Guanglian Li, 2024. "A deep primal-dual BSDE method for optimal stopping problems," Papers 2409.06937, arXiv.org.
    4. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Neural Optimal Stopping Boundary," Papers 2205.04595, arXiv.org, revised May 2023.
    5. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    6. Tavasoli, Ahmadreza & Breton, Michèle, 2025. "Evaluation of counterparty credit risk under netting agreements," European Journal of Operational Research, Elsevier, vol. 320(2), pages 402-416.
    7. Riccardo Aiolfi & Nicola Moreni & Marco Bianchetti & Marco Scaringi, 2024. "Learning Bermudans," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2813-2852, November.
      • Riccardo Aiolfi & Nicola Moreni & Marco Bianchetti & Marco Scaringi & Filippo Fogliani, 2021. "Learning Bermudans," Papers 2105.00655, arXiv.org.
    8. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.
    10. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    11. Beatriz Salvador & Cornelis W. Oosterlee & Remco van der Meer, 2020. "Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    12. Jasper Rou, 2025. "Time Deep Gradient Flow Method for pricing American options," Papers 2507.17606, arXiv.org.
    13. Nader Karimi & Erfan Salavati & Hirbod Assa & Hojatollah Adibi, 2023. "Sensitivity Analysis of Optimal Commodity Decision Making with Neural Networks: A Case for COVID-19," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
    14. Kristoffer Andersson & Alessandro Gnoatto, 2025. "Multi-Layer Deep xVA: Structural Credit Models, Measure Changes and Convergence Analysis," Papers 2502.14766, arXiv.org, revised Feb 2025.
    15. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    16. Lokman Abbas-Turki & St'ephane Cr'epey & Bouazza Saadeddine, 2022. "Pathwise CVA Regressions With Oversimulated Defaults," Papers 2211.17005, arXiv.org.
    17. Fabio Antonelli & Alessandro Ramponi & Sergio Scarlatti, 2023. "Wrong Way Risk corrections to CVA in CIR reduced-form models," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.
    18. Jérôme Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Working Papers hal-01983115, HAL.
    19. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2023. "Backward Hedging for American Options with Transaction Costs," Papers 2305.06805, arXiv.org, revised Jun 2023.
    20. Lokman A. Abbas‐Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA regressions with oversimulated defaults," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 274-307, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:22:y:2025:i:2:d:10.1007_s10287-025-00540-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.