Pathwise CVA regressions with oversimulated defaults
Author
Abstract
Suggested Citation
DOI: 10.1111/mafi.12368
Download full text from publisher
References listed on IDEAS
- Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020.
"Deep xVA solver -- A neural network based counterparty credit risk management framework,"
Papers
2005.02633, arXiv.org, revised Dec 2022.
- Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver - A neural network based counterparty credit risk management framework," Working Papers 07/2020, University of Verona, Department of Economics.
- René Carmona & Stéphane Crépey, 2010. "Particle Methods For The Estimation Of Credit Portfolio Loss Distributions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 577-602.
- Crépey, Stéphane & Song, Shiqi, 2015. "BSDEs of counterparty risk," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3023-3052.
- Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021.
"XVA analysis from the balance sheet,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
- Claudio Albanese & Stephane Crepey & Rodney Hoskinson & Bouazza Saadeddine, 2020. "XVA Analysis From the Balance Sheet," Papers 2009.00368, arXiv.org.
- Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA Analysis From the Balance Sheet," Post-Print hal-03910125, HAL.
- Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
- Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
- Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
- Brian Huge & Antoine Savine, 2020. "Differential Machine Learning," Papers 2005.02347, arXiv.org, revised Sep 2020.
- Michael B. Gordy & Sandeep Juneja, 2010.
"Nested Simulation in Portfolio Risk Measurement,"
Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
- Michael B. Gordy & Sandeep Juneja, 2008. "Nested simulation in portfolio risk measurement," Finance and Economics Discussion Series 2008-21, Board of Governors of the Federal Reserve System (U.S.).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lokman Abbas-Turki & St'ephane Cr'epey & Botao Li & Bouazza Saadeddine, 2024. "An Explicit Scheme for Pathwise XVA Computations," Papers 2401.13314, arXiv.org.
- St'ephane Cr'epey & Botao Li & Hoang Nguyen & Bouazza Saadeddine, 2024. "CVA Sensitivities, Hedging and Risk," Papers 2407.18583, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lokman Abbas-Turki & St'ephane Cr'epey & Bouazza Saadeddine, 2022. "Pathwise CVA Regressions With Oversimulated Defaults," Papers 2211.17005, arXiv.org.
- Lokman A Abbas-Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA Regressions With Oversimulated Defaults," Post-Print hal-03910149, HAL.
- Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020.
"Deep xVA solver -- A neural network based counterparty credit risk management framework,"
Papers
2005.02633, arXiv.org, revised Dec 2022.
- Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver - A neural network based counterparty credit risk management framework," Working Papers 07/2020, University of Verona, Department of Economics.
- Domagoj Demeterfi & Kathrin Glau & Linus Wunderlich, 2025. "Function approximations for counterparty credit exposure calculations," Papers 2507.09004, arXiv.org.
- Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021.
"A Fully Quantization-based Scheme for FBSDEs,"
Working Papers
07/2021, University of Verona, Department of Economics.
- Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Papers 2105.09276, arXiv.org.
- Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
- Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
- Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
- Sascha Desmettre & Ralf Korn & Javier Alejandro Varela & Norbert Wehn, 2016. "Nested MC-Based Risk Measurement of Complex Portfolios: Acceleration and Energy Efficiency," Risks, MDPI, vol. 4(4), pages 1-35, October.
- Patrick Cheridito & John Ery & Mario V. Wüthrich, 2020. "Assessing Asset-Liability Risk with Neural Networks," Risks, MDPI, vol. 8(1), pages 1-17, February.
- Francisco G'omez Casanova & 'Alvaro Leitao & Fernando de Lope Contreras & Carlos V'azquez, 2024. "Deep Joint Learning valuation of Bermudan Swaptions," Papers 2404.11257, arXiv.org.
- Fort Gersende & Gobet Emmanuel & Moulines Eric, 2017. "MCMC design-based non-parametric regression for rare event. Application to nested risk computations," Monte Carlo Methods and Applications, De Gruyter, vol. 23(1), pages 21-42, March.
- Magnus Grønnegaard Frandsen & Tobias Cramer Pedersen & Rolf Poulsen, 2022. "Delta force: option pricing with differential machine learning," Digital Finance, Springer, vol. 4(1), pages 1-15, March.
- Joel P. Villarino & 'Alvaro Leitao, 2024. "On Deep Learning for computing the Dynamic Initial Margin and Margin Value Adjustment," Papers 2407.16435, arXiv.org.
- Griselda Deelstra & Lech A. Grzelak & Felix L. Wolf, 2022. "Accelerated Computations of Sensitivities for xVA," Papers 2211.17026, arXiv.org, revised Jan 2024.
- Stéphane Crépey & Matthew F Dixon, 2020. "Gaussian process regression for derivative portfolio modeling and application to credit valuation adjustment computations," Post-Print hal-03910109, HAL.
- Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021.
"XVA analysis from the balance sheet,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
- Claudio Albanese & Stephane Crepey & Rodney Hoskinson & Bouazza Saadeddine, 2020. "XVA Analysis From the Balance Sheet," Papers 2009.00368, arXiv.org.
- Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA Analysis From the Balance Sheet," Post-Print hal-03910125, HAL.
- Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.
- Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
- Nteukam T., Oberlain & Planchet, Frédéric, 2012. "Stochastic evaluation of life insurance contracts: Model point on asset trajectories and measurement of the error related to aggregation," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 624-631.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:33:y:2023:i:2:p:274-307. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/bla/mathfi/v33y2023i2p274-307.html