IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v48y2025i1d10.1007_s10203-024-00472-y.html
   My bibliography  Save this article

Backward hedging for American options with transaction costs

Author

Listed:
  • Ludovic Goudenège

    (Féderation de Mathématiques de CentraleSupelec)

  • Andrea Molent

    (Università degli Studi di Udine)

  • Antonino Zanette

    (Università degli Studi di Udine)

Abstract

In this article, we introduce an algorithm called Backward Hedging, designed for hedging European and American options while considering transaction costs. The optimal strategy is determined by minimizing an appropriate loss function, which is based on either a risk measure or the mean squared error of the hedging strategy at maturity. Specifically, the algorithm moves backward in time, determining, for each time-step and different market states, the optimal hedging strategy that minimizes the loss function at the time the option is exercised, by assuming that the strategy used in the future for hedging the liability is the one determined at the previous steps of the algorithm. The proposed approach only employs classic techniques, such as an optimization algorithm, Monte Carlo simulation, and interpolation on a grid. Above all, our choice of a backward iterating approach addresses the issue of time-inconsistency inherent in many traditional risk measures, compelling the optimal strategy to maintain consistency over time, even though the original problem might not inherently support such consistency. Comparisons with the Deep Hedging algorithm in various numerical experiments showcase the efficiency and accuracy of the proposed method.

Suggested Citation

  • Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2025. "Backward hedging for American options with transaction costs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 48(1), pages 541-569, June.
  • Handle: RePEc:spr:decfin:v:48:y:2025:i:1:d:10.1007_s10203-024-00472-y
    DOI: 10.1007/s10203-024-00472-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-024-00472-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-024-00472-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. M. Briani & L. Caramellino & A. Zanette, 2015. "A hybrid tree/finite-difference approach for Heston-Hull-White type models," Papers 1503.03705, arXiv.org, revised Dec 2017.
    2. Martin Schweizer, 1995. "Variance-Optimal Hedging in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 1-32, February.
    3. Maciej Augustyniak & Frédéric Godin & Clarence Simard, 2017. "Assessing the effectiveness of local and global quadratic hedging under GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1305-1318, September.
    4. Cheridito, Patrick & Stadje, Mitja, 2009. "Time-inconsistency of VaR and time-consistent alternatives," Finance Research Letters, Elsevier, vol. 6(1), pages 40-46, March.
    5. Maya Briani & Lucia Caramellino & Antonino Zanette, 2017. "A hybrid approach for the implementation of the Heston model," Post-Print hal-00916440, HAL.
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Mazzoni,Thomas, 2018. "A First Course in Quantitative Finance," Cambridge Books, Cambridge University Press, number 9781108419574, November.
    8. Hans FÃllmer & Peter Leukert, 2000. "Efficient hedging: Cost versus shortfall risk," Finance and Stochastics, Springer, vol. 4(2), pages 117-146.
    9. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    10. Jan Kallsen & Johannes Muhle-Karbe, 2015. "Option Pricing And Hedging With Small Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 25(4), pages 702-723, October.
    11. A. E. Whalley & P. Wilmott, 1997. "An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 307-324, July.
    12. Mazzoni,Thomas, 2018. "A First Course in Quantitative Finance," Cambridge Books, Cambridge University Press, number 9781108411431, November.
    13. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
    14. Susanne Klöppel & Martin Schweizer, 2007. "Dynamic Indifference Valuation Via Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 599-627, October.
    15. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    16. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2021. "Gaussian process regression for pricing variable annuities with stochastic volatility and interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 57-72, June.
    17. Maya Briani & Lucia Caramellino & Antonino Zanette, 2013. "A hybrid approach for the implementation of the Heston model," Papers 1307.7178, arXiv.org, revised Sep 2017.
    18. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.
    19. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    20. Kang Boda & Jerzy Filar, 2006. "Time Consistent Dynamic Risk Measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 169-186, February.
    21. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2019. "Pricing and hedging American-style options with deep learning," Papers 1912.11060, arXiv.org, revised Jul 2020.
    22. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    23. Cui, Xiangyu & Gao, Jianjun & Shi, Yun & Zhu, Shushang, 2019. "Time-consistent and self-coordination strategies for multi-period mean-Conditional Value-at-Risk portfolio selection," European Journal of Operational Research, Elsevier, vol. 276(2), pages 781-789.
    24. Potters, Marc & Bouchaud, Jean-Philippe & Sestovic, Dragan, 2001. "Hedged Monte-Carlo: low variance derivative pricing with objective probabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 517-525.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2023. "Backward Hedging for American Options with Transaction Costs," Papers 2305.06805, arXiv.org, revised Jun 2023.
    2. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    3. F. Godin, 2016. "Minimizing CVaR in global dynamic hedging with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 461-475, March.
    4. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    5. Hans Buhler & Lukas Gonon & Josef Teichmann & Ben Wood, 2018. "Deep Hedging," Papers 1802.03042, arXiv.org.
    6. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015, January-A.
    7. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    8. Pierre Brugi`ere & Gabriel Turinici, 2025. "Model-Free Deep Hedging with Transaction Costs and Light Data Requirements," Papers 2505.22836, arXiv.org.
    9. Edoardo Lombardo, 2025. "Some PDE results in Heston model with applications," Papers 2504.19859, arXiv.org.
    10. Lin, Zhongguo & Han, Liyan & Li, Wei, 2021. "Option replication with transaction cost under Knightian uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    11. Manuel Galea & Alonso Molina & Isabelle S. Beaudry, 2025. "Diagnostic for Volatility and Local Influence Analysis for the Vasicek Model," JRFM, MDPI, vol. 18(2), pages 1-20, January.
    12. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Gaussian Process Regression for Pricing Variable Annuities with Stochastic Volatility and Interest Rate," Papers 1903.00369, arXiv.org, revised Jul 2019.
    13. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2018. "Computing Credit Valuation Adjustment solving coupled PIDEs in the Bates model," Papers 1809.05328, arXiv.org.
    14. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    15. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    16. Jasper Rou, 2025. "Time Deep Gradient Flow Method for pricing American options," Papers 2507.17606, arXiv.org.
    17. Alexandre Carbonneau & Fr'ed'eric Godin, 2020. "Equal Risk Pricing of Derivatives with Deep Hedging," Papers 2002.08492, arXiv.org, revised Jun 2020.
    18. Bertram During & Alexander Pitkin, 2017. "High-order compact finite difference scheme for option pricing in stochastic volatility jump models," Papers 1704.05308, arXiv.org, revised Feb 2019.
    19. Marcelo Righi, 2024. "Optimal hedging with variational preferences under convex risk measures," Papers 2407.03431, arXiv.org, revised Oct 2024.
    20. Ajay Khanna & Dilip Madan, 2004. "Understanding option prices," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 55-63.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:48:y:2025:i:1:d:10.1007_s10203-024-00472-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.