IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.22836.html
   My bibliography  Save this paper

Model-Free Deep Hedging with Transaction Costs and Light Data Requirements

Author

Listed:
  • Pierre Brugi`ere
  • Gabriel Turinici

Abstract

Option pricing theory, such as the Black and Scholes (1973) model, provides an explicit solution to construct a strategy that perfectly hedges an option in a continuous-time setting. In practice, however, trading occurs in discrete time and often involves transaction costs, making the direct application of continuous-time solutions potentially suboptimal. Previous studies, such as those by Buehler et al. (2018), Buehler et al. (2019) and Cao et al. (2019), have shown that deep learning or reinforcement learning can be used to derive better hedging strategies than those based on continuous-time models. However, these approaches typically rely on a large number of trajectories (of the order of $10^5$ or $10^6$) to train the model. In this work, we show that using as few as 256 trajectories is sufficient to train a neural network that significantly outperforms, in the Geometric Brownian Motion framework, both the classical Black & Scholes formula and the Leland model, which is arguably one of the most effective explicit alternatives for incorporating transaction costs. The ability to train neural networks with such a small number of trajectories suggests the potential for more practical and simple implementation on real-time financial series.

Suggested Citation

  • Pierre Brugi`ere & Gabriel Turinici, 2025. "Model-Free Deep Hedging with Transaction Costs and Light Data Requirements," Papers 2505.22836, arXiv.org.
  • Handle: RePEc:arx:papers:2505.22836
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.22836
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    2. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    3. Masanori Hirano & Kentaro Minami & Kentaro Imajo, 2023. "Adversarial Deep Hedging: Learning to Hedge without Price Process Modeling," Papers 2307.13217, arXiv.org.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Pierre Brugière & Gabriel Turinici, 2023. "Deep learning of Value at Risk through generative neural network models : the case of the Variational Auto Encoder," Post-Print hal-03880381, HAL.
    7. Hans FÃllmer & Peter Leukert, 2000. "Efficient hedging: Cost versus shortfall risk," Finance and Stochastics, Springer, vol. 4(2), pages 117-146.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    2. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    3. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Baule, Rainer & Münchhalfen, Patrick & Shkel, David & Tallau, Christian, 2023. "Fair-washing in the market for structured retail products? Voluntary self-regulation versus government regulation," Journal of Banking & Finance, Elsevier, vol. 148(C).
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Siddiqi, Hammad, 2015. "Behavioralizing the Black-Scholes Model," MPRA Paper 86234, University Library of Munich, Germany.
    8. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    9. Minting Zhu & Mancang Wang & Jingyu Wu, 2024. "An Option Pricing Formula for Active Hedging Under Logarithmic Investment Strategy," Mathematics, MDPI, vol. 12(23), pages 1-20, December.
    10. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    11. Jos'e Manuel Corcuera, 2021. "The Golden Age of the Mathematical Finance," Papers 2102.06693, arXiv.org, revised Mar 2021.
    12. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    13. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    14. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2023. "Backward Hedging for American Options with Transaction Costs," Papers 2305.06805, arXiv.org, revised Jun 2023.
    15. Thai Huu Nguyen & Serguei Pergamenshchikov, 2015. "Approximate hedging problem with transaction costs in stochastic volatility markets," Papers 1505.02546, arXiv.org.
    16. Yannick Limmer & Blanka Horvath, 2023. "Robust Hedging GANs," Papers 2307.02310, arXiv.org.
    17. Huu Thai Nguyen & Serguei Pergamenchtchikov, 2012. "Approximate hedging problem with transaction costs in stochastic volatility markets," Working Papers hal-00808608, HAL.
    18. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    19. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    20. Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," Risk and Sustainable Management Group Working Papers 207677, University of Queensland, School of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.22836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.