IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v19y2022i4d10.1007_s10287-022-00427-x.html
   My bibliography  Save this article

American options and stochastic interest rates

Author

Listed:
  • Anna Battauz

    (Bocconi University)

  • Francesco Rotondi

    (Università degli Studi di Padova)

Abstract

We study finite-maturity American equity options in a stochastic mean-reverting diffusive interest rate framework. We allow for a non-zero correlation between the innovations driving the equity price and the interest rate. Importantly, we also allow for the interest rate to assume negative values, which is the case for some investment grade government bonds in Europe in recent years. In this setting we focus on American equity call and put options and characterize analytically their two-dimensional free boundary, i.e. the underlying equity and the interest rate values that trigger the optimal exercise of the option before maturity. We show that non-standard double continuation regions may appear, extending the findings documented in the literature in a constant interest rate framework. Moreover, we contribute by developing a bivariate discretization of the equity price and interest rate processes that converges in distribution as the time step shrinks. This discretization, described by a recombining quadrinomial tree, allows us to compute American equity options’ prices and to analyze their free boundaries with respect to time and current interest rate. Finally, we document the existence of non-standard optimal exercise policies for American call options on a non-dividend-paying equity.

Suggested Citation

  • Anna Battauz & Francesco Rotondi, 2022. "American options and stochastic interest rates," Computational Management Science, Springer, vol. 19(4), pages 567-604, October.
  • Handle: RePEc:spr:comgts:v:19:y:2022:i:4:d:10.1007_s10287-022-00427-x
    DOI: 10.1007/s10287-022-00427-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-022-00427-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-022-00427-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    2. Giuseppe Orlando & Rosa Maria Mininni & Michele Bufalo, 2020. "Forecasting interest rates through Vasicek and CIR models: A partitioning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 569-579, July.
    3. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    4. Connolly, Robert & Stivers, Chris & Sun, Licheng, 2005. "Stock Market Uncertainty and the Stock-Bond Return Relation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(1), pages 161-194, March.
    5. Chockalingam, Arun & Feng, Haolin, 2015. "The implication of missing the optimal-exercise time of an American option," European Journal of Operational Research, Elsevier, vol. 243(3), pages 883-896.
    6. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    7. Ludovic Goudenege & Andrea Molent & Antonino Zanette, 2019. "Pricing and hedging GMWB in the Heston and in the Black–Scholes with stochastic interest rate models," Computational Management Science, Springer, vol. 16(1), pages 217-248, February.
    8. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    9. Perego, Erica R. & Vermeulen, Wessel N., 2016. "Macro-economic determinants of European stock and government bond correlations: A tale of two regions," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 214-232.
    10. Svetlana Boyarchenko & Sergei LevendorskiĬ, 2013. "American Options in the Heston Model with Stochastic Interest Rate and Its Generalizations," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(1), pages 26-49, March.
    11. Nelson, Daniel B & Ramaswamy, Krishna, 1990. "Simple Binomial Processes as Diffusion Approximations in Financial Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 393-430.
    12. Hahn, Warren J. & Dyer, James S., 2008. "Discrete time modeling of mean-reverting stochastic processes for real option valuation," European Journal of Operational Research, Elsevier, vol. 184(2), pages 534-548, January.
    13. Damien Lamberton, 1993. "Convergence of the Critical Price In the Approximation of American Options," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 179-190, April.
    14. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    15. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    16. Marcellino Gaudenzi & Antonino Zanette, 2017. "Fast binomial procedures for pricing Parisian/ParAsian options," Computational Management Science, Springer, vol. 14(3), pages 313-331, July.
    17. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    18. Jérôme Detemple & Weidong Tian, 2002. "The Valuation of American Options for a Class of Diffusion Processes," Management Science, INFORMS, vol. 48(7), pages 917-937, July.
    19. Maurizio Pratelli & Sabrina Mulinacci, 1998. "Functional convergence of Snell envelopes: Applications to American options approximations," Finance and Stochastics, Springer, vol. 2(3), pages 311-327.
    20. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    21. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    22. Xiao Wei & Marcellino Gaudenzi & Antonino Zanette, 2013. "Pricing Ratchet Equity-Indexed Annuities with Early Surrender Risk in a CIR++ Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 17(3), pages 229-252.
    23. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie-Claude Vachon & Anne Mackay, 2024. "A Unifying Approach for the Pricing of Debt Securities," Papers 2403.06303, arXiv.org, revised Oct 2024.
    2. Hao Zhou & Duy-Minh Dang, 2024. "Numerical analysis of American option pricing in a two-asset jump-diffusion model," Papers 2410.04745, arXiv.org, revised Oct 2024.
    3. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    4. Battauz, Anna & De Donno, Marzia & Sbuelz, Alessandro, 2022. "On the exercise of American quanto options," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    5. Fontana, Claudio & Rotondi, Francesco, 2023. "Valuation of general GMWB annuities in a low interest rate environment," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 142-167.
    6. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2022. "The American put with finite‐time maturity and stochastic interest rate," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1170-1213, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    2. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    3. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    4. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    5. Francesco Rotondi, 2019. "American Options on High Dividend Securities: A Numerical Investigation," Risks, MDPI, vol. 7(2), pages 1-20, May.
    6. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    7. Werner Hürlimann, 2012. "Valuation of fixed and variable rate mortgages: binomial tree versus analytical approximations," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 35(2), pages 171-202, November.
    8. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    11. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    12. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    13. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    14. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    15. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    16. Tian‐Shyr Dai & Chen‐Chiang Fan & Liang‐Chih Liu & Chuan‐Ju Wang & Jr‐Yan Wang, 2022. "A stochastic‐volatility equity‐price tree for pricing convertible bonds with endogenous firm values and default risks determined by the first‐passage default model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2103-2134, December.
    17. Jonathan A. Batten & Karren Lee-Hwei Khaw & Martin R. Young, 2014. "Convertible Bond Pricing Models," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 775-803, December.
    18. Ma, Jingtang & Yang, Wensheng & Cui, Zhenyu, 2021. "CTMC integral equation method for American options under stochastic local volatility models," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    19. Dimakopoulou, Andriana G. & Pramatari, Katerina C. & Tsekrekos, Andrianos E., 2014. "Applying real options to IT investment evaluation: The case of radio frequency identification (RFID) technology in the supply chain," International Journal of Production Economics, Elsevier, vol. 156(C), pages 191-207.
    20. Warren J. Hahn & James S. Dyer, 2011. "A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes," Decision Analysis, INFORMS, vol. 8(3), pages 220-232, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:19:y:2022:i:4:d:10.1007_s10287-022-00427-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.