CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Wei-Hsin & Lin, Shih-Cheng, 2015. "Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation," Energy, Elsevier, vol. 82(C), pages 206-217.
- Kwon, Byeong Wan & Oh, Joo Hyeng & Kim, Ghun Sik & Yoon, Sung Pil & Han, Jonghee & Nam, Suk Woo & Ham, Hyung Chul, 2018. "The novel perovskite-type Ni-doped Sr0.92Y0.08TiO3 as a reforming biogas (CH4+CO2) for H2 production," Applied Energy, Elsevier, vol. 227(C), pages 213-219.
- Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
- Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Roh, Hyun-Seog & Son, In Hyuk & Lee, Seung Jae, 2016. "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application," Applied Energy, Elsevier, vol. 173(C), pages 80-91.
- Lo, An-Ya & Hung, Chin-Te & Yu, Ningya & Kuo, Cheng-Tzu & Liu, Shang-Bin, 2012. "Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction," Applied Energy, Elsevier, vol. 100(C), pages 66-74.
- Bian, Zhoufeng & Wang, Zhigang & Jiang, Bo & Hongmanorom, Plaifa & Zhong, Wenqi & Kawi, Sibudjing, 2020. "A review on perovskite catalysts for reforming of methane to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Walluk, Mark R. & Lin, Jiefeng & Waller, Michael G. & Smith, Daniel F. & Trabold, Thomas A., 2014. "Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation," Applied Energy, Elsevier, vol. 130(C), pages 94-102.
- Li, Xingxing & Zhu, Gangli & Qi, Suitao & Huang, Jun & Yang, Bolun, 2014. "Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports," Applied Energy, Elsevier, vol. 130(C), pages 846-852.
- Luu, Minh Tri & Milani, Dia & Sharma, Manish & Zeaiter, Joseph & Abbas, Ali, 2016. "Model-based analysis of CO2 revalorization for di-methyl ether synthesis driven by solar catalytic reforming," Applied Energy, Elsevier, vol. 177(C), pages 863-878.
- Wijaya, Willy Yanto & Kawasaki, Shunsuke & Watanabe, Hirotatsu & Okazaki, Ken, 2012. "Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system," Applied Energy, Elsevier, vol. 94(C), pages 141-147.
- Zhang, Yidian & Guo, Shaopeng & Tian, Zhenyu & Zhao, Yawen & Hao, Yong, 2019. "Experimental investigation of steam reforming of methanol over La2CuO4/CuZnAl-oxides nanocatalysts," Applied Energy, Elsevier, vol. 254(C).
- Vadikkeettil, Yugesh & Subramaniam, Yugeswaran & Murugan, Ramaswamy & Ananthapadmanabhan, P.V. & Mostaghimi, Javad & Pershin, Larry & Batiot-Dupeyrat, Catherine & Kobayashi, Yasukazu, 2022. "Plasma assisted decomposition and reforming of greenhouse gases: A review of current status and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Chung, Wei-Chieh & Chang, Moo-Been, 2016. "Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 13-31.
- Chen, Wei-Hsin & Lin, Shih-Cheng, 2016. "Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery," Applied Energy, Elsevier, vol. 162(C), pages 1141-1152.
- Rutberg, Philip G. & Kuznetsov, Vadim A. & Popov, Victor E. & Popov, Sergey D. & Surov, Alexander V. & Subbotin, Dmitry I. & Bratsev, Alexander N., 2015. "Conversion of methane by CO2+H2O+CH4 plasma," Applied Energy, Elsevier, vol. 148(C), pages 159-168.
- Arab Aboosadi, Z. & Jahanmiri, A.H. & Rahimpour, M.R., 2011. "Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method," Applied Energy, Elsevier, vol. 88(8), pages 2691-2701, August.
- Chen, Wei-Hsin & Hsia, Ming-Hsien & Chi, Yen-Hsun & Lin, Yu-Li & Yang, Chang-Chung, 2014. "Polarization phenomena of hydrogen-rich gas in high-permeance Pd and Pd–Cu membrane tubes," Applied Energy, Elsevier, vol. 113(C), pages 41-50.
- Chen, Xuejing & Jiang, Jianguo & Li, Kaimin & Tian, Sicong & Yan, Feng, 2017. "Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O2," Applied Energy, Elsevier, vol. 185(P1), pages 687-697.
- Li, Chunlin & Xu, Hengyong & Hou, Shoufu & Sun, Jian & Meng, Fanqiong & Ma, Junguo & Tsubaki, Noritatsu, 2013. "SiC foam monolith catalyst for pressurized adiabatic methane reforming," Applied Energy, Elsevier, vol. 107(C), pages 297-303.
- Das, Satyen Kumar & Mohanty, Pravakar & Majhi, Sachchit & Pant, Kamal Kishore, 2013. "CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading," Applied Energy, Elsevier, vol. 111(C), pages 267-276.
- Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
- Zhang, Baoxu & Chen, Yumin & Zhang, Bing & Peng, Ruifeng & Lu, Qiancheng & Yan, Weijie & Yu, Bo & Liu, Fang & Zhang, Junying, 2022. "Cyclic performance of coke oven gas - Steam reforming with assistance of steel slag derivates for high purity hydrogen production," Renewable Energy, Elsevier, vol. 184(C), pages 592-603.
- Jalali, Ramin & Rezaei, Mehran & Nematollahi, Behzad & Baghalha, Morteza, 2020. "Preparation of Ni/MeAl2O4-MgAl2O4 (Me=Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane," Renewable Energy, Elsevier, vol. 149(C), pages 1053-1067.
- Lu, Jianfeng & Chen, Yuan & Ding, Jing & Wang, Weilong, 2016. "High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor," Applied Energy, Elsevier, vol. 162(C), pages 1473-1482.
More about this item
Keywords
NdCoO3 perovskite-type mixed metal-oxide catalyst Methane Oxy-CO2 reforming of methane Simultaneous CO2 and steam reforming of methane Co/Nd2O3 catalyst;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:83:y:2006:i:9:p:1024-1032. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.