Modeling and optimization of a novel power-to-methanol system based on SOEC CO2/H2O co-electrolysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2025.126227
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
- Gu, Hongfei & Liu, Jianzi & Zhou, Xingchen & Wu, Qiwei & Liu, Yaodong & Yu, Shuaixian & Qiu, Wenying & Xu, Jianguo, 2023. "Modelling of a novel electricity and methanol co-generation using heat recovery and CO2 capture: Comprehensive thermodynamic, economic, and environmental analyses," Energy, Elsevier, vol. 278(C).
- Sorrenti, Ilaria & Harild Rasmussen, Theis Bo & You, Shi & Wu, Qiuwei, 2022. "The role of power-to-X in hybrid renewable energy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Anicic, B. & Trop, P. & Goricanec, D., 2014. "Comparison between two methods of methanol production from carbon dioxide," Energy, Elsevier, vol. 77(C), pages 279-289.
- Graves, Christopher & Ebbesen, Sune D. & Mogensen, Mogens & Lackner, Klaus S., 2011. "Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 1-23, January.
- Wiesberg, Igor Lapenda & Brigagão, George Victor & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 720-732.
- Wang, Ligang & Rao, Megha & Diethelm, Stefan & Lin, Tzu-En & Zhang, Hanfei & Hagen, Anke & Maréchal, François & Van herle, Jan, 2019. "Power-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanation," Applied Energy, Elsevier, vol. 250(C), pages 1432-1445.
- Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
- Andika, Riezqa & Nandiyanto, Asep Bayu Dani & Putra, Zulfan Adi & Bilad, Muhammad Roil & Kim, Young & Yun, Choa Mun & Lee, Moonyong, 2018. "Co-electrolysis for power-to-methanol applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 227-241.
- Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.
- Ghannadzadeh, Ali & Thery-Hetreux, Raphaële & Baudouin, Olivier & Baudet, Philippe & Floquet, Pascal & Joulia, Xavier, 2012. "General methodology for exergy balance in ProSimPlus® process simulator," Energy, Elsevier, vol. 44(1), pages 38-59.
- Martín, Mariano & Grossmann, Ignacio E., 2018. "Optimal integration of renewable based processes for fuels and power production: Spain case study," Applied Energy, Elsevier, vol. 213(C), pages 595-610.
- Al-Kalbani, Haitham & Xuan, Jin & García, Susana & Wang, Huizhi, 2016. "Comparative energetic assessment of methanol production from CO2: Chemical versus electrochemical process," Applied Energy, Elsevier, vol. 165(C), pages 1-13.
- Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Xiaobin & Liu, Chao & Zhang, Jie & Fan, Yinming & Zhu, Yinian & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Hongxiang & Zhu, Zongqiang, 2023. "Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator," Energy, Elsevier, vol. 270(C).
- Wang, Rujie & Yang, Yuying & Wang, Mengfan & Lin, Jinshan & Zhang, Shihan & An, Shanlong & Wang, Lidong, 2021. "Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study," Applied Energy, Elsevier, vol. 290(C).
- Shen, Yao & Chen, Han & Wang, Junliang & Zhang, Shihan & Jiang, Chenkai & Ye, Jiexu & Wang, Lidong & Chen, Jianmeng, 2020. "Two-stage interaction performance of CO2 absorption into biphasic solvents: Mechanism analysis, quantum calculation and energy consumption," Applied Energy, Elsevier, vol. 260(C).
- Hanfei Zhang & Ligang Wang & Jan Van herle & François Maréchal & Umberto Desideri, 2019. "Techno-Economic Optimization of CO 2 -to-Methanol with Solid-Oxide Electrolyzer," Energies, MDPI, vol. 12(19), pages 1-15, September.
- Wang, Rujie & Jiang, Lei & Li, Qiangwei & Gao, Ge & Zhang, Shihan & Wang, Lidong, 2020. "Energy-saving CO2 capture using sulfolane-regulated biphasic solvent," Energy, Elsevier, vol. 211(C).
- Zhang, Hanfei & Desideri, Umberto, 2020. "Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers," Energy, Elsevier, vol. 199(C).
- Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.
- Alivand, Masood S. & Mazaheri, Omid & Wu, Yue & Stevens, Geoffrey W. & Scholes, Colin A. & Mumford, Kathryn A., 2019. "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent," Applied Energy, Elsevier, vol. 256(C).
- Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
- Li, Qiangwei & Huang, Xin & Li, Nuo & Qi, Tieyue & Wang, Rujie & Wang, Lidong & An, Shanlong, 2024. "Energy-efficient biphasic solvents for industrial CO2 capture: Absorption mechanism and stability characteristics," Energy, Elsevier, vol. 293(C).
- Abu Yousuf & Md Shahadat Hossain & Nishat Paul & Md Woashib Shikder & Deepak Kumar & Domenico Pirozzi & Ahmed Nazmus Sakib & Pejman Kazempoor, 2023. "Process Integration Approach to the Methanol (MeOH) Production Variability from Syngas and Industrial Waste Gases," Energies, MDPI, vol. 16(18), pages 1-24, September.
- Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Zhou, Xiaobin & Liu, Chao & Fan, Yinming & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Yinian & Zhu, Zongqiang, 2022. "Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics," Energy, Elsevier, vol. 255(C).
- Zhou, Huairong & Cao, Abo & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Yang, Siyu, 2024. "Process integration and analysis of coupling solid oxide electrolysis cell (SOEC) and CO2 to methanol," Energy, Elsevier, vol. 307(C).
- Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
- Huang, Chikun & Lin, Zhenhong & Xu, Chaoxu & Zhang, Baotong & Ou, Shiqi & Xue, Xingyu & Hong, Frank T., 2025. "The complementary role of E-fuel in decarbonizing transportation and stabilizing the power grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
- Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
- Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:395:y:2025:i:c:s0306261925009572. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/appene/v395y2025ics0306261925009572.html