IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v392y2025ics0306261925006452.html
   My bibliography  Save this article

Control-oriented thermal management strategies for large-load fluctuation PEM fuel cell systems

Author

Listed:
  • Li, Yuhan
  • Zheng, Zhifeng
  • Guo, Yangge
  • Cheng, Xiaojing
  • Yan, Xiaohui
  • Wei, Guanghua
  • Shen, Shuiyun
  • Zhang, Junliang

Abstract

Thermal management control is of great significance to the performance and durability of proton exchange membrane fuel cell (PEMFC), which is challenging under large-load fluctuations due to its strong nonlinearity and variable time delay. Therefore, we employ cascade internal model control (IMC) to achieve better tracking performance under wide-range load variation and robustness against delayed disturbances, combining with current feedforward to reduce the time delay. Additionally, a double inner-loop cascade IMC for both thermostat and fans is proposed here to further improve the robustness, and a modified Smith predictor is introduced to ameliorate time-delay disturbance rejection. Firstly, the responsiveness and robustness of these proposed control strategies are evaluated by step tests and white noise disturbance tests, respectively. The results show that the cascade IMC of thermostat with the current feedforward control of fans (CS3) has the best responsiveness under load steps due to the time-delay reduction by current feedforward, while the double-inner loop cascade IMC with modified Smith predictor (CS2) exhibits the best responsiveness under ambient-air-temperature steps as well as the best robustness under either voltage interference or ambient temperature disturbances, indicating the effectiveness of its robust improvement and delayed disturbance rejection. Moreover, these control strategies are also validated under large-load fluctuation. CS3 is found to strictly keep the temperature tracking the target within ±0.6 °C, while CS2 shows a slightly worse convergence but presents the strongest temperature tracking under large-load fluctuations with voltage decay and disturbances, which shows practical value in automotive PEMFC systems, especially for long-term operation.

Suggested Citation

  • Li, Yuhan & Zheng, Zhifeng & Guo, Yangge & Cheng, Xiaojing & Yan, Xiaohui & Wei, Guanghua & Shen, Shuiyun & Zhang, Junliang, 2025. "Control-oriented thermal management strategies for large-load fluctuation PEM fuel cell systems," Applied Energy, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006452
    DOI: 10.1016/j.apenergy.2025.125915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Bo & Lin, Fei & Zhang, Caizhi & Liao, Ruiyue & Wang, Ya-Xiong, 2020. "Design and implementation of model predictive control for an open-cathode fuel cell thermal management system," Renewable Energy, Elsevier, vol. 154(C), pages 1014-1024.
    2. Chen, Xi & Feng, Wentao & You, Shuhuai & Hu, Yukang & Wan, Yixin & Zhao, Bin, 2025. "Dual temperature parameter control of PEMFC stack based on improved differential evolution algorithm," Renewable Energy, Elsevier, vol. 241(C).
    3. Sun, Li & Jin, Yuhui & You, Fengqi, 2020. "Active disturbance rejection temperature control of open-cathode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 261(C).
    4. Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    5. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Oñederra, O., 2018. "Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies," Applied Energy, Elsevier, vol. 211(C), pages 413-430.
    6. Pachauri, Rupendra Kumar & Chauhan, Yogesh K., 2015. "A study, analysis and power management schemes for fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1301-1319.
    7. Shin, Donghoon & Yoo, Seungryeol, 2023. "Diagnostic method for PEM fuel cell states using probability Distribution-Based loss component analysis for voltage loss decomposition," Applied Energy, Elsevier, vol. 330(PB).
    8. Yu, Sen & Fan, Yi & Shi, Zhengrong & Zhang, Jingkui & Zhang, Tao & Zhang, Jiakai & Liu, Zewen, 2024. "Innovative heat management method and metaheuristic algorithm optimized power supply-demand balance for PEMFC-ASHP-CHP system," Applied Energy, Elsevier, vol. 371(C).
    9. Liu, Zhaoming & Chang, Guofeng & Yuan, Hao & Tang, Wei & Xie, Jiaping & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive look-ahead model predictive control strategy of vehicular PEMFC thermal management," Energy, Elsevier, vol. 285(C).
    10. Yu, Xingzi & Zhang, Caizhi & Li, Mengxiao & Wang, Gucheng & Tu, Zhengkai & Yu, Tao & Dong, Hui & Zhao, Fuqiang, 2024. "Thermal management of an open-cathode PEMFC based on constraint generalized predictive control and optimized strategy," Renewable Energy, Elsevier, vol. 220(C).
    11. Chen, Jun-Hong & He, Pu & Cai, Sai-Jie & He, Ze-Hong & Zhu, Hao-Ning & Yu, Zi-Yan & Yang, Lu-Zheng & Tao, Wen-Quan, 2024. "Modeling and temperature control of a water-cooled PEMFC system using intelligent algorithms," Applied Energy, Elsevier, vol. 372(C).
    12. Gao, Bin & Zhou, Yuekuan, 2024. "A co-simulation platform and climate-adaptive optimisation for cross-scale PEMFC combined heat and power supply in buildings with semi-empirical surrogate models," Applied Energy, Elsevier, vol. 375(C).
    13. Chu, Tiankuo & Wang, Qinpu & Xie, Meng & Wang, Baoyun & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2022. "Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test," Energy, Elsevier, vol. 258(C).
    14. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    15. Yu, Xiao & Sandhu, Navjot S. & Yang, Zhenyi & Zheng, Ming, 2020. "Suitability of energy sources for automotive application – A review," Applied Energy, Elsevier, vol. 271(C).
    16. Shen, Yuanting & Yan, Xiaohui & An, Liang & Shen, Shuiyun & An, Lu & Zhang, Junliang, 2022. "Portable proton exchange membrane fuel cell using polyoxometalates as multi-functional hydrogen carrier," Applied Energy, Elsevier, vol. 313(C).
    17. Oh, Si-Doek & Kim, Ki-Young & Oh, Shuk-Bum & Kwak, Ho-Young, 2012. "Optimal operation of a 1-kW PEMFC-based CHP system for residential applications," Applied Energy, Elsevier, vol. 95(C), pages 93-101.
    18. Barelli, L. & Bidini, G. & Gallorini, F. & Ottaviano, A., 2012. "Dynamic analysis of PEMFC-based CHP systems for domestic application," Applied Energy, Elsevier, vol. 91(1), pages 13-28.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Hongye & Xu, Haisong & Wang, Lei & Liu, Zhiyang & Xie, Lei, 2025. "A review on thermal management strategy for liquid-cooling proton exchange membrane fuel cells: Temperature regulation and cold start," Applied Energy, Elsevier, vol. 393(C).
    2. Tu, Xikai & Lv, Jin & Wu, Jin & Luo, Xiaobing & Tu, Zhengkai, 2025. "Experimental investigation of a novel open cathode air-cooled fuel cell stack design featuring simultaneous inlet blowing and outlet suction," Energy, Elsevier, vol. 314(C).
    3. Bird, Trevor J. & Jain, Neera, 2020. "Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage," Applied Energy, Elsevier, vol. 271(C).
    4. Wang, Renkang & Li, Kai & Chen, Peng & Tang, Hao, 2025. "Multiple subpopulation Salp swarm algorithm with Symbiosis theory and Gaussian distribution for optimizing warm-up strategy of fuel cell power system," Applied Energy, Elsevier, vol. 393(C).
    5. Najmi, Aezid-Ul-Hassan & Wahab, Abdul & Prakash, Rohith & Schopen, Oliver & Esch, Thomas & Shabani, Bahman, 2025. "Thermal management of fuel cell-battery electric vehicles: Challenges and solutions," Applied Energy, Elsevier, vol. 387(C).
    6. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Ye, Huan & Zhang, Caizhi & Jiang, Xiaojie, 2024. "Fuel cell temperature control based on nonlinear transformation mitigating system nonlinearity," Renewable Energy, Elsevier, vol. 230(C).
    7. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    8. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    9. Zhao, Jing & Cheng, Xinxuan & Ma, Yongkang & Zhong, Zixun & Zhou, Caiting & Lv, Youfu & Xie, Baoshan & Li, Chuanchang, 2025. "Experimental study on heat and mass transfer enhancement of open cathode proton exchange membrane fuel cells using turbulence grids," Applied Energy, Elsevier, vol. 385(C).
    10. Han, Hun Sik & Cho, Changhwan & Kim, Seo Young & Hyun, Jae Min, 2013. "Performance evaluation of a polymer electrolyte membrane fuel cell system for powering portable freezer," Applied Energy, Elsevier, vol. 105(C), pages 125-137.
    11. Yuan, Yi & Chen, Li & Lyu, Xingbao & Ning, Wenjing & Liu, Wenqi & Tao, Wen-Quan, 2024. "Modeling and optimization of a residential PEMFC-based CHP system under different operating modes," Applied Energy, Elsevier, vol. 353(PA).
    12. Song, Dafeng & Wu, Qingtao & Zeng, Xiaohua & Zhang, Xuanming & Qian, Qifeng & Yang, DongPo, 2024. "Feedback-linearization decoupling based coordinated control of air supply and thermal management for vehicular fuel cell system," Energy, Elsevier, vol. 305(C).
    13. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 93(P2), pages 2079-2086.
    14. Zhao, Chen & Wang, Fei & Wu, Xiaoyu, 2024. "Analysis and review on air-cooled open cathode proton exchange membrane fuel cells: Bibliometric, environmental adaptation and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    15. Bruni, G. & Cordiner, S. & Mulone, V., 2014. "Domestic distributed power generation: Effect of sizing and energy management strategy on the environmental efficiency of a photovoltaic-battery-fuel cell system," Energy, Elsevier, vol. 77(C), pages 133-143.
    16. Wang, Xuan & Jin, Ming & Feng, Wei & Shu, Gequn & Tian, Hua & Liang, Youcai, 2018. "Cascade energy optimization for waste heat recovery in distributed energy systems," Applied Energy, Elsevier, vol. 230(C), pages 679-695.
    17. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    18. Chen, Xi & Feng, Wentao & You, Shuhuai & Hu, Yukang & Wan, Yixin & Zhao, Bin, 2025. "Dual temperature parameter control of PEMFC stack based on improved differential evolution algorithm," Renewable Energy, Elsevier, vol. 241(C).
    19. Jung, Guo-Bin & Chuang, Kai-Yuan & Jao, Ting-Chu & Yeh, Chia-Chen & Lin, Chih-Yuan, 2012. "Study of high voltage applied to the membrane electrode assemblies of proton exchange membrane fuel cells as an accelerated degradation technique," Applied Energy, Elsevier, vol. 100(C), pages 81-86.
    20. Maksymilian Mądziel, 2024. "Quantifying Emissions in Vehicles Equipped with Energy-Saving Start–Stop Technology: THC and NOx Modeling Insights," Energies, MDPI, vol. 17(12), pages 1-25, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.