IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124023875.html
   My bibliography  Save this article

Dual temperature parameter control of PEMFC stack based on improved differential evolution algorithm

Author

Listed:
  • Chen, Xi
  • Feng, Wentao
  • You, Shuhuai
  • Hu, Yukang
  • Wan, Yixin
  • Zhao, Bin

Abstract

Temperature is a vital parameter that impacts the capability and lifespan of proton exchange membrane fuel cell (PEMFC). Proper temperature control can effectively prevent membrane dehydration or catalyst activity degradation, thereby enhancing the performance of PEMFC. In this paper, a temperature management system model based on dual proportional integral differential (PID) controllers is established to accurately control the temperature of the cooling water and stack. An improved differential evolution algorithm (IDE) is designed to adjust the mutation factor, crossover factor and search range. The parameters of the dual IDE-PID controllers are synchronously optimized to maintain a temperature difference of approximately 5 K between the inlet cooling water and stack. The performance of IDE-PID controller is compared with other control strategies. The results show that the overshoot of IDE-PID controller in controlling the stack temperature is lowered by 83 %, 77 %, and 75 % compared to the Fuzzy-PID, GA (genetic algorithm)-PID and PSO (particle swarm optimization)-PID, respectively. The temperature fluctuations of stack can be controlled below 0.15 K. Meanwhile, IDE-PID controller has a stable control effect at different pressures, relative humidities and air excess ratios. The system is able to make rapid adjustments in the event of sudden external disturbances.

Suggested Citation

  • Chen, Xi & Feng, Wentao & You, Shuhuai & Hu, Yukang & Wan, Yixin & Zhao, Bin, 2025. "Dual temperature parameter control of PEMFC stack based on improved differential evolution algorithm," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023875
    DOI: 10.1016/j.renene.2024.122319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    2. Sun, Li & Jin, Yuhui & You, Fengqi, 2020. "Active disturbance rejection temperature control of open-cathode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 261(C).
    3. Chen, Jun-Hong & He, Pu & Cai, Sai-Jie & He, Ze-Hong & Zhu, Hao-Ning & Yu, Zi-Yan & Yang, Lu-Zheng & Tao, Wen-Quan, 2024. "Modeling and temperature control of a water-cooled PEMFC system using intelligent algorithms," Applied Energy, Elsevier, vol. 372(C).
    4. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    5. Daud, W.R.W. & Rosli, R.E. & Majlan, E.H. & Hamid, S.A.A. & Mohamed, R. & Husaini, T., 2017. "PEM fuel cell system control: A review," Renewable Energy, Elsevier, vol. 113(C), pages 620-638.
    6. Yuan, Yongliang & Yang, Qingkang & Ren, Jianji & Mu, Xiaokai & Wang, Zhenxi & Shen, Qianlong & Zhao, Wu, 2024. "Attack-defense strategy assisted osprey optimization algorithm for PEMFC parameters identification," Renewable Energy, Elsevier, vol. 225(C).
    7. Sun, Li & Li, Guanru & Hua, Q.S. & Jin, Yuhui, 2020. "A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control," Renewable Energy, Elsevier, vol. 147(P1), pages 1642-1652.
    8. Yang, Luo & Nik-Ghazali, Nik-Nazri & Ali, Mohammed A.H. & Chong, Wen Tong & Yang, Zhenzhong & Liu, Haichao, 2023. "A review on thermal management in proton exchange membrane fuel cells: Temperature distribution and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Shusheng Xiong & Zhankuan Wu & Wei Li & Daize Li & Teng Zhang & Yu Lan & Xiaoxuan Zhang & Shuyan Ye & Shuhao Peng & Zeyu Han & Jiarui Zhu & Qiujie Song & Zhixiao Jiao & Xiaofeng Wu & Heqing Huang, 2021. "Improvement of Temperature and Humidity Control of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    10. Sun, Zhe & Wang, Ning & Bi, Yunrui & Srinivasan, Dipti, 2015. "Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm," Energy, Elsevier, vol. 90(P2), pages 1334-1341.
    11. Wang, Hanbin & Luo, Chunhuan & Zhang, Rudan & Li, Yongsheng & Yang, Changchang & Li, Zexiang & Li, Jianhao & Li, Na & Li, Yiqun & Su, Qingquan, 2023. "Experiment and performance evaluation of an integrated low-temperature proton exchange membrane fuel cell system with an absorption chiller," Renewable Energy, Elsevier, vol. 215(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yuhan & Zheng, Zhifeng & Guo, Yangge & Cheng, Xiaojing & Yan, Xiaohui & Wei, Guanghua & Shen, Shuiyun & Zhang, Junliang, 2025. "Control-oriented thermal management strategies for large-load fluctuation PEM fuel cell systems," Applied Energy, Elsevier, vol. 392(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. kanouni, Badreddine & Laib, Abdelbaset & Necaibia, Salah & Krama, Abdelbasset & Guerrero, Josep M., 2025. "Pied kingfisher optimizer for accurate parameter extraction in proton exchange membrane fuel cell," Energy, Elsevier, vol. 325(C).
    2. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Ye, Huan & Zhang, Caizhi & Jiang, Xiaojie, 2024. "Fuel cell temperature control based on nonlinear transformation mitigating system nonlinearity," Renewable Energy, Elsevier, vol. 230(C).
    3. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.
    5. Saadaoui, Driss & Elyaqouti, Mustapha & Choulli, Imade & Assalaou, Khalid & Hmamou, Dris Ben & Lidaighbi, Souad & Arjdal, El hanafi & Elhammoudy, Abdelfattah & Abazine, Ismail, 2025. "Optimizing parameter extraction in proton exchange membrane fuel cell models via differential evolution with dynamic crossover strategy," Energy, Elsevier, vol. 321(C).
    6. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    7. Su, Hongye & Xu, Haisong & Wang, Lei & Liu, Zhiyang & Xie, Lei, 2025. "A review on thermal management strategy for liquid-cooling proton exchange membrane fuel cells: Temperature regulation and cold start," Applied Energy, Elsevier, vol. 393(C).
    8. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    9. Ahmed M. Agwa & Attia A. El-Fergany & Gamal M. Sarhan, 2019. "Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer," Energies, MDPI, vol. 12(10), pages 1-14, May.
    10. Qianchao Wang & Hongcan Xu & Lei Pan & Li Sun, 2020. "Active Disturbance Rejection Control of Boiler Forced Draft System: A Data-Driven Practice," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    11. Yin, Cong & Gao, Yan & Li, Ting & Xie, Guangyou & Li, Kai & Tang, Hao, 2020. "Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model," Renewable Energy, Elsevier, vol. 147(P1), pages 650-662.
    12. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Miao, Di & Chen, Wei & Zhao, Wei & Demsas, Tekle, 2020. "Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method," Energy, Elsevier, vol. 193(C).
    14. Mohamed Louzazni & Sameer Al-Dahidi & Marco Mussetta, 2020. "Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique," Sustainability, MDPI, vol. 12(19), pages 1-23, October.
    15. Zhang, Bo & Wang, Rongjie & Jiang, Desong & Wang, Yichun & lin, Anhui & Wang, Jianfeng & Ruan, Bingcong, 2023. "Parameter identification of proton exchange membrane fuel cell based on swarm intelligence algorithm," Energy, Elsevier, vol. 283(C).
    16. Liu, Jiaxuan & Wang, Jing & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2025. "The analysis of cross-level transfer characteristic of hydrogen and heat of thermal coupling system: Framework design and case study," Energy, Elsevier, vol. 323(C).
    17. Yang, Fan & Li, Yuehua & Chen, Dongfang & Hu, Song & Xu, Xiaoming, 2024. "Parameter identification of PEMFC steady-state model based on p-dimensional extremum seeking via simplex tuning optimization method," Energy, Elsevier, vol. 292(C).
    18. Li, Yuhan & Zheng, Zhifeng & Guo, Yangge & Cheng, Xiaojing & Yan, Xiaohui & Wei, Guanghua & Shen, Shuiyun & Zhang, Junliang, 2025. "Control-oriented thermal management strategies for large-load fluctuation PEM fuel cell systems," Applied Energy, Elsevier, vol. 392(C).
    19. Byung-Yeon Seo & Hyun Kyu Suh, 2025. "The Impact of Flow Rate Variations on the Power Performance and Efficiency of Proton Exchange Membrane Fuel Cells: A Focus on Anode Flooding Caused by Crossover Effect and Concentration Loss," Energies, MDPI, vol. 18(12), pages 1-27, June.
    20. Wang, Renkang & Li, Kai & Chen, Peng & Tang, Hao, 2025. "Multiple subpopulation Salp swarm algorithm with Symbiosis theory and Gaussian distribution for optimizing warm-up strategy of fuel cell power system," Applied Energy, Elsevier, vol. 393(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.