IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925002715.html
   My bibliography  Save this article

Stable energy management for highway electric vehicle charging based on reinforcement learning

Author

Listed:
  • Xie, Hongbin
  • Song, Ge
  • Shi, Zhuoran
  • Peng, Likun
  • Feng, Defan
  • Song, Xuan

Abstract

With the growing global awareness of carbon neutrality and environmental protection, the rapid increase in electric vehicles poses an urgent challenge for highway energy management: how to achieve stable and rational scheduling of the power supply system. Previous research has utilized reinforcement learning to achieve significant success in the scheduling decisions of power supply systems, demonstrating its immense potential. However, achieving long-term stable and environmentally friendly power supply scheduling strategies in large-scale and complex highway energy management systems remains a significant challenge in current research. To fill this gap, we propose HEM-GPT, a large-scale highway energy management framework based on the Generative Pre-trained Transformer architecture. This framework includes an efficient representation module for predicting long-term power supply decision actions and a stable decision-making learning paradigm to enhance the robustness and generalization ability. By applying a linear Q-value decomposition method to the action space, HEM-GPT can effectively reduce the computational burden and complexity of the decision space in large-scale systems. Furthermore, we implement an online adaptive fine-tuning mechanism to bolster the model’s stability and its adaptability to new scenarios. The results show that HEM-GPT reduces the cost by 45.5% compared to the best baseline in terms of long-term scheduling capability for the future.

Suggested Citation

  • Xie, Hongbin & Song, Ge & Shi, Zhuoran & Peng, Likun & Feng, Defan & Song, Xuan, 2025. "Stable energy management for highway electric vehicle charging based on reinforcement learning," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925002715
    DOI: 10.1016/j.apenergy.2025.125541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925002715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.