IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925002715.html
   My bibliography  Save this article

Stable energy management for highway electric vehicle charging based on reinforcement learning

Author

Listed:
  • Xie, Hongbin
  • Song, Ge
  • Shi, Zhuoran
  • Peng, Likun
  • Feng, Defan
  • Song, Xuan

Abstract

With the growing global awareness of carbon neutrality and environmental protection, the rapid increase in electric vehicles poses an urgent challenge for highway energy management: how to achieve stable and rational scheduling of the power supply system. Previous research has utilized reinforcement learning to achieve significant success in the scheduling decisions of power supply systems, demonstrating its immense potential. However, achieving long-term stable and environmentally friendly power supply scheduling strategies in large-scale and complex highway energy management systems remains a significant challenge in current research. To fill this gap, we propose HEM-GPT, a large-scale highway energy management framework based on the Generative Pre-trained Transformer architecture. This framework includes an efficient representation module for predicting long-term power supply decision actions and a stable decision-making learning paradigm to enhance the robustness and generalization ability. By applying a linear Q-value decomposition method to the action space, HEM-GPT can effectively reduce the computational burden and complexity of the decision space in large-scale systems. Furthermore, we implement an online adaptive fine-tuning mechanism to bolster the model’s stability and its adaptability to new scenarios. The results show that HEM-GPT reduces the cost by 45.5% compared to the best baseline in terms of long-term scheduling capability for the future.

Suggested Citation

  • Xie, Hongbin & Song, Ge & Shi, Zhuoran & Peng, Likun & Feng, Defan & Song, Xuan, 2025. "Stable energy management for highway electric vehicle charging based on reinforcement learning," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925002715
    DOI: 10.1016/j.apenergy.2025.125541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Zegong & He, Hongwen, 2024. "A data-driven solution for intelligent power allocation of connected hybrid electric vehicles inspired by offline deep reinforcement learning in V2X scenario," Applied Energy, Elsevier, vol. 372(C).
    2. Su, Chengguo & Wang, Lingshuang & Sui, Quan & Wu, Huijun, 2025. "Optimal scheduling of a cascade hydro-thermal-wind power system integrating data centers and considering the spatiotemporal asynchronous transfer of energy resources," Applied Energy, Elsevier, vol. 377(PA).
    3. Ajagekar, Akshay & Decardi-Nelson, Benjamin & You, Fengqi, 2024. "Energy management for demand response in networked greenhouses with multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 355(C).
    4. Champagne, Marie-Pier & Dubé, Jean, 2023. "The impact of transport infrastructure on firms’ location decision: A meta-analysis based on a systematic literature review," Transport Policy, Elsevier, vol. 131(C), pages 139-155.
    5. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    6. Zhou, Jianshu & Xiang, Yue & Zhang, Xin & Sun, Zhou & Liu, Xuefei & Liu, Junyong, 2025. "Optimal self-consumption scheduling of highway electric vehicle charging station based on multi-agent deep reinforcement learning," Renewable Energy, Elsevier, vol. 238(C).
    7. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    8. Ignatov, Augustin, 2024. "European highway networks, transportation costs, and regional income," Regional Science and Urban Economics, Elsevier, vol. 104(C).
    9. Huang, Ruchen & He, Hongwen & Su, Qicong & Härtl, Martin & Jaensch, Malte, 2025. "Type- and task-crossing energy management for fuel cell vehicles with longevity consideration: A heterogeneous deep transfer reinforcement learning framework," Applied Energy, Elsevier, vol. 377(PC).
    10. Zhang, Haoran & Song, Xuan & Xia, Tianqi & Yuan, Meng & Fan, Zipei & Shibasaki, Ryosuke & Liang, Yongtu, 2018. "Battery electric vehicles in Japan: Human mobile behavior based adoption potential analysis and policy target response," Applied Energy, Elsevier, vol. 220(C), pages 527-535.
    11. Yu, Qing & Wang, Zhen & Song, Yancun & Shen, Xinwei & Zhang, Haoran, 2024. "Potential and flexibility analysis of electric taxi fleets V2G system based on trajectory data and agent-based modeling," Applied Energy, Elsevier, vol. 355(C).
    12. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2022. "Energy saving analysis in electrified powertrain using look-ahead energy management scheme," Applied Energy, Elsevier, vol. 325(C).
    13. Mahmud, Khizir & Town, Graham E., 2016. "A review of computer tools for modeling electric vehicle energy requirements and their impact on power distribution networks," Applied Energy, Elsevier, vol. 172(C), pages 337-359.
    14. Wu, Jingda & Huang, Chao & He, Hongwen & Huang, Hailong, 2024. "Confidence-aware reinforcement learning for energy management of electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    15. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    16. Brown, David P. & Sappington, David E.M., 2018. "On the role of maximum demand charges in the presence of distributed generation resources," Energy Economics, Elsevier, vol. 69(C), pages 237-249.
    17. Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael, 2021. "Mixed-integer linear programming based optimization strategies for renewable energy communities," Energy, Elsevier, vol. 237(C).
    18. Qingyan Li & Tao Lin & Qianyi Yu & Hui Du & Jun Li & Xiyue Fu, 2023. "Review of Deep Reinforcement Learning and Its Application in Modern Renewable Power System Control," Energies, MDPI, vol. 16(10), pages 1-23, May.
    19. Van Can Nguyen & Chi-Tai Wang & Ying-Jiun Hsieh, 2021. "Electrification of Highway Transportation with Solar and Wind Energy," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    20. Pinthurat, Watcharakorn & Surinkaew, Tossaporn & Hredzak, Branislav, 2024. "An overview of reinforcement learning-based approaches for smart home energy management systems with energy storages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    21. Elinor Ginzburg-Ganz & Itay Segev & Alexander Balabanov & Elior Segev & Sivan Kaully Naveh & Ram Machlev & Juri Belikov & Liran Katzir & Sarah Keren & Yoash Levron, 2024. "Reinforcement Learning Model-Based and Model-Free Paradigms for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions," Energies, MDPI, vol. 17(21), pages 1-54, October.
    22. Rodriguez, Mauricio & Arcos–Aviles, Diego & Martinez, Wilmar, 2023. "Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms," Applied Energy, Elsevier, vol. 335(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    2. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    3. Hu, Rong & Zhou, Kaile & Yin, Hui, 2024. "Reinforcement learning model for incentive-based integrated demand response considering demand-side coupling," Energy, Elsevier, vol. 308(C).
    4. Muhammad Ikram & Daryoush Habibi & Asma Aziz, 2025. "Networked Multi-Agent Deep Reinforcement Learning Framework for the Provision of Ancillary Services in Hybrid Power Plants," Energies, MDPI, vol. 18(10), pages 1-34, May.
    5. Wang, Yi & Qiu, Dawei & Strbac, Goran, 2022. "Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems," Applied Energy, Elsevier, vol. 310(C).
    6. Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    8. Zhang, Chengquan & Kitamura, Hiroshi & Goto, Mika, 2024. "Feasibility of vehicle-to-grid (V2G) implementation in Japan: A regional analysis of the electricity supply and demand adjustment market," Energy, Elsevier, vol. 311(C).
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    12. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    14. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    15. Jiang, Wei & Wang, Teng & Yuan, Dongdong & Sha, Aimin & Zhang, Shuo & Zhang, Yufei & Xiao, Jingjing & Xing, Chengwei, 2024. "Available solar resources and photovoltaic system planning strategy for highway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    16. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    17. Yi, Wenjing & Yan, Jie, 2020. "Energy consumption and emission influences from shared mobility in China: A national level annual data analysis," Applied Energy, Elsevier, vol. 277(C).
    18. Zhang, Haoran & Chen, Jinyu & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke, 2020. "Mobile phone GPS data in urban ride-sharing: An assessment method for emission reduction potential," Applied Energy, Elsevier, vol. 269(C).
    19. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    20. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925002715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.