IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124020500.html
   My bibliography  Save this article

Optimal self-consumption scheduling of highway electric vehicle charging station based on multi-agent deep reinforcement learning

Author

Listed:
  • Zhou, Jianshu
  • Xiang, Yue
  • Zhang, Xin
  • Sun, Zhou
  • Liu, Xuefei
  • Liu, Junyong

Abstract

Due to the randomness of renewable energy and electric vehicles (EVs) in highway charging stations, it is difficult to ensure the consistency of renewable energy supply and EVs demand. Considering the randomness of EVs charging and renewable energy power generation, an optimal self-consumption scheduling of a highway EV charging station based on multi-agent deep reinforcement learning (MADRL) is proposed to realize the economy, self-consumption, low-carbon operation and ensure reliability of power supply. In day-ahead, the traffic flow prediction model based on the CNN-BiLSTM and the queuing model based on user psychology are built to predict the charging load. The 24-h optimal charging price is obtained by solving the incentive price optimization model and guides the orderly charging of EVs. In intra-day, considering the prediction errors of day-ahead and the diversity of charging levels, an optimal scheduling based on the MADRL is proposed. Regarding the multi-objective scheduling of the highway charging station, the multi-objective nonlinear and non-convex problem is transformed into multi-agent Markov game model. Finally, the effectiveness and optimality of the proposed method are verified on a highway charging station The results show that the proposed method can realize the economy, self-consumption and low-carbon operation of the charging station.

Suggested Citation

  • Zhou, Jianshu & Xiang, Yue & Zhang, Xin & Sun, Zhou & Liu, Xuefei & Liu, Junyong, 2025. "Optimal self-consumption scheduling of highway electric vehicle charging station based on multi-agent deep reinforcement learning," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020500
    DOI: 10.1016/j.renene.2024.121982
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124020500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.