IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v386y2025ics0306261925003083.html
   My bibliography  Save this article

Fault diagnosis of photovoltaic arrays with different degradation levels based on cross-domain adaptive generative adversarial network

Author

Listed:
  • Lin, Peijie
  • Guo, Feng
  • Lin, Yaohai
  • Cheng, Shuying
  • Lu, Xiaoyang
  • Chen, Zhicong
  • Wu, Lijun

Abstract

Recently, promising progresses have been made in photovoltaic (PV) arrays fault diagnosis (FD) due to the importance of operation and maintenance of PV power plants. However, PV arrays inevitably experience gradual degradation due to the complexity of operating conditions, resulting in domain shift of output data, which has a significant negative impact on the performance of FD. To address these problems, this study proposes a two-stage cross-domain, i.e., adaptive generative adversarial network deep learning approach for PV arrays FD under different degradation levels. In the first stage, the Normal data from the source domain (PV arrays without performance degradation) is utilized for training. Then, the Maximum Mean Discrepancy (MMD) loss is introduced to the fault generators in adversarial training to produce high-level feature representations of source domain fault data. In the second stage, identical training steps are used to guide the fault generators. Specifically, Normal data from the target domain i.e., PV arrays with performance degradation, is utilized to generate fault data features that are consistent with the target domain features. Then, the cross-domain adaptive FD model can be trained by using generated fault data features. The proposed model can not only learn the relationship from the different types of data, but also utilize target domain PV array data under healthy conditions to manually generate fake samples for cross-domain adaptive FD. Experimental results show that the Precision of the proposed model in the two tasks is 98.34 % and 92.93 %, with Recall is 98.23 % and 94.13 %, F1-Score is 0.9823 and 0.9274, all of which are better than those of the comparison models.

Suggested Citation

  • Lin, Peijie & Guo, Feng & Lin, Yaohai & Cheng, Shuying & Lu, Xiaoyang & Chen, Zhicong & Wu, Lijun, 2025. "Fault diagnosis of photovoltaic arrays with different degradation levels based on cross-domain adaptive generative adversarial network," Applied Energy, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003083
    DOI: 10.1016/j.apenergy.2025.125578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
    2. Oliveira, Michele Cândida Carvalho de & Diniz Cardoso, Antônia Sonia Alves & Viana, Marcelo Machado & Lins, Vanessa de Freitas Cunha, 2018. "The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2299-2317.
    3. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Gong, Bin & An, Aimin & Shi, Yaoke & Zhang, Xuemin, 2024. "Fast fault detection method for photovoltaic arrays with adaptive deep multiscale feature enhancement," Applied Energy, Elsevier, vol. 353(PA).
    5. Thiago A. Felipe & Fernando C. Melo & Luiz C. G. Freitas, 2021. "Design and Development of an Online Smart Monitoring and Diagnosis System for Photovoltaic Distributed Generation," Energies, MDPI, vol. 14(24), pages 1-13, December.
    6. Jaeun Kim & Matheus Rabelo & Siva Parvathi Padi & Hasnain Yousuf & Eun-Chel Cho & Junsin Yi, 2021. "A Review of the Degradation of Photovoltaic Modules for Life Expectancy," Energies, MDPI, vol. 14(14), pages 1-21, July.
    7. Cui, Y.J. & Wang, B.L. & Wang, K.F. & Wang, G.G. & Zhang, A.B., 2022. "An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device," Renewable Energy, Elsevier, vol. 182(C), pages 923-933.
    8. Fengxin Cui & Yanzhao Tu & Wei Gao, 2022. "A Photovoltaic System Fault Identification Method Based on Improved Deep Residual Shrinkage Networks," Energies, MDPI, vol. 15(11), pages 1-20, May.
    9. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    10. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).
    11. Rahimilarki, Reihane & Gao, Zhiwei & Jin, Nanlin & Zhang, Aihua, 2022. "Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine," Renewable Energy, Elsevier, vol. 185(C), pages 916-931.
    12. Jia Luo & Jinying Huang & Hongmei Li, 2021. "A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 407-425, February.
    13. Mahmudul Islam & Masud Rana Rashel & Md Tofael Ahmed & A. K. M. Kamrul Islam & Mouhaydine Tlemçani, 2023. "Artificial Intelligence in Photovoltaic Fault Identification and Diagnosis: A Systematic Review," Energies, MDPI, vol. 16(21), pages 1-18, November.
    14. Hang Yin & Zhongzhi Li & Jiankai Zuo & Hedan Liu & Kang Yang & Fei Li, 2020. "Wasserstein Generative Adversarial Network and Convolutional Neural Network (WG-CNN) for Bearing Fault Diagnosis," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-16, May.
    15. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianfranco Di Lorenzo & Erika Stracqualursi & Leonardo Micheli & Salvatore Celozzi & Rodolfo Araneo, 2022. "Prognostic Methods for Photovoltaic Systems’ Underperformance and Degradation: Status, Perspectives, and Challenges," Energies, MDPI, vol. 15(17), pages 1-6, September.
    2. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    3. Joshuva Arockia Dhanraj & Ali Mostafaeipour & Karthikeyan Velmurugan & Kuaanan Techato & Prem Kumar Chaurasiya & Jenoris Muthiya Solomon & Anitha Gopalan & Khamphe Phoungthong, 2021. "An Effective Evaluation on Fault Detection in Solar Panels," Energies, MDPI, vol. 14(22), pages 1-14, November.
    4. Meena, Roopmati & Pareek, Arti & Gupta, Rajesh, 2024. "A comprehensive Review on interfacial delamination in photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    6. Adam Fennessy & Vasile Onea & James Walshe & John Doran & Marius Purcar & George Amarandei, 2025. "Suitability of Existing Photovoltaic Degradation Models for Agrivoltaic Systems," Energies, MDPI, vol. 18(8), pages 1-31, April.
    7. Liu, Bo & Wang, Xiaoyu & Sun, Kai & Bi, Qiang & Chen, Lei & Xu, Jian & Yang, Xiaoping, 2024. "A novel data-driven state evaluation approach for photovoltaic arrays in uncertain shading scenarios," Energy, Elsevier, vol. 312(C).
    8. Faris Alqurashi & Rached Nciri & Abdulrahman Alghamdi & Chaouki Ali & Faouzi Nasri, 2022. "Control of the Solar Radiation Reception Rate (SRRR) Using a Novel Poly-Tilted Segmented Panel (PTSP) in the Region of Makkah, Saudi Arabia," Energies, MDPI, vol. 15(7), pages 1-15, March.
    9. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    10. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.
    11. Bingcheng Yu & Jiangjian Shi & Yiming Li & Shan Tan & Yuqi Cui & Fanqi Meng & Huijue Wu & Yanhong Luo & Dongmei Li & Qingbo Meng, 2025. "Regulating three-layer full carbon electrodes to enhance the cell performance of CsPbI3 perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    13. Yu, Zhe & Chen, Cuiying & Lou, Duo & Jiang, Jingjing & Ye, Bin, 2025. "Energy-economy-environment evaluation of building-integrated photovoltaic considering facade factors for representative megacities in China," Applied Energy, Elsevier, vol. 389(C).
    14. Yang, Kuang & Liao, Haifan & Xu, Bo & Chen, Qiuxiang & Hou, Zhenghui & Wang, Haijun, 2024. "Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem," Energy, Elsevier, vol. 294(C).
    15. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    16. Luo, Run & Li, Yadong & Guo, Huiyu & Wang, Qi & Wang, Xiaolie, 2024. "Cross-operating-condition fault diagnosis of a small module reactor based on CNN-LSTM transfer learning with limited data," Energy, Elsevier, vol. 313(C).
    17. Jun Su & Zhiyuan Zeng & Chaolong Tang & Zhiquan Liu & Tianyou Li, 2024. "A Photovoltaic Fault Diagnosis Method Integrating Photovoltaic Power Prediction and EWMA Control Chart," Energies, MDPI, vol. 17(17), pages 1-22, August.
    18. Wang, Haotong & Li, Yanjun & Lin, Chaojing & Yang, Siyuan & Li, Guolong & Sun, Shengdi & Tian, Ye & Shi, Jianxin, 2024. "Research on condition assessment of nuclear power systems based on fault severity and fault harmfulness," Energy, Elsevier, vol. 311(C).
    19. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    20. Oyeniyi A. Alimi & Edson L. Meyer & Olufemi I. Olayiwola, 2022. "Solar Photovoltaic Modules’ Performance Reliability and Degradation Analysis—A Review," Energies, MDPI, vol. 15(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.