IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014356.html
   My bibliography  Save this article

Fast fault detection method for photovoltaic arrays with adaptive deep multiscale feature enhancement

Author

Listed:
  • Gong, Bin
  • An, Aimin
  • Shi, Yaoke
  • Zhang, Xuemin

Abstract

Photovoltaic (PV) arrays have output characteristics such as randomness and intermittency, and faults can seriously affect the safe operation of the power system. In order to improve the comprehensive performance of the PV array fault diagnosis model, a new intelligent online fault monitoring method for PV arrays is proposed in this paper. (1) a three-dimensional channel feature map based on I, V, and P features is constructed because the I-V and P curves of the PV array have significantly different effects under different fault conditions. (2) The PV array fault diagnosis model based on a multi-source information fusion network (MIFNet) is proposed, and Channel Mixing Convolution (CMC) module, three-dimensional feature attention enhancement (TDFAE) module, and Channel normalized scaling (CNS) module are designed to improve the comprehensive performance of the model. (3) An adaptive nonlinear mutual sparrow search algorithm (ANMSSA) is proposed to optimize the hyperparameter configuration of the MIFNet network. The experimental results show that the average recognition accuracy, prediction accuracy, and sensitivity of the ANMSSA-MIFNet network proposed in this paper are 99.64%, 99.64%, and 99.71% respectively. When facing single-component faults and multi-component faults, the model has stronger diagnostic accuracy, robustness, anti-noise ability, and stability, and can efficiently diagnose different faults of PV arrays, providing the scientific basis and theoretical support for the operation of PV systems.

Suggested Citation

  • Gong, Bin & An, Aimin & Shi, Yaoke & Zhang, Xuemin, 2024. "Fast fault detection method for photovoltaic arrays with adaptive deep multiscale feature enhancement," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014356
    DOI: 10.1016/j.apenergy.2023.122071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.