IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261925000029.html
   My bibliography  Save this article

State of health estimation for lithium-ion batteries using impedance-based simplified timescale information

Author

Listed:
  • Qian, Guangjun
  • Zheng, Yuejiu
  • Li, Xinyu
  • Sun, Yuedong
  • Han, Xuebing
  • Ouyang, Minggao

Abstract

Accurate estimation of the state of health (SOH) of lithium-ion batteries is critical for enhancing battery safety and operational reliability. The distribution of relaxation times (DRT) provides information of battery electrochemical impedance spectroscopy (EIS) on the timescales, reflecting internal kinetic processes and showing strong correlations with SOH. However, the extraction and application of this timescale information within battery management systems (BMS) are impeded by the need for broadband EIS data and intricate mathematical processes for DRT method. To address these challenges, a simplified timescale information (STI) method based on impedance is proposed, which delineates different battery states without requiring complex calculations. A data-driven SOH estimation model is developed using a gradient boosting decision tree algorithm with STI. Results from the test set indicate that the model, using selected STI (SSTI) features, achieves an average error of only 1.36 %, outperforming existing impedance feature extraction methods. Even excluding battery usage history (such as degradation temperature and state of charge), the model employing SSTI maintains an average error of 2.4 %. Moreover, the proposed SSTI method imposes minimal computational demands and does not require broadband EIS data. As SSTI features can be rapidly obtained through EIS chip, this method shows promise for online, real-time applications, paving a new path for data-driven BMS.

Suggested Citation

  • Qian, Guangjun & Zheng, Yuejiu & Li, Xinyu & Sun, Yuedong & Han, Xuebing & Ouyang, Minggao, 2025. "State of health estimation for lithium-ion batteries using impedance-based simplified timescale information," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000029
    DOI: 10.1016/j.apenergy.2025.125272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925000029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galeotti, Matteo & CinĂ , Lucio & Giammanco, Corrado & Cordiner, Stefano & Di Carlo, Aldo, 2015. "Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy," Energy, Elsevier, vol. 89(C), pages 678-686.
    2. Yunwei Zhang & Qiaochu Tang & Yao Zhang & Jiabin Wang & Ulrich Stimming & Alpha A. Lee, 2020. "Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
    4. He, Rong & He, Yongling & Xie, Wenlong & Guo, Bin & Yang, Shichun, 2023. "Comparative analysis for commercial li-ion batteries degradation using the distribution of relaxation time method based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 263(PD).
    5. Zhou, Yong & Dong, Guangzhong & Tan, Qianqian & Han, Xueyuan & Chen, Chunlin & Wei, Jingwen, 2023. "State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression," Energy, Elsevier, vol. 262(PB).
    6. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    7. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenyuan Liu & Heng Li & Kexin Li & Yue Wu & Baogang Lv, 2025. "Deep Learning for State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles: A Systematic Review," Energies, MDPI, vol. 18(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    2. Wang, Shaojin & Tang, Jinrui & Xiong, Binyu & Fan, Junqiu & Li, Yang & Chen, Qihong & Xie, Changjun & Wei, Zhongbao, 2024. "Comparison of techniques based on frequency response analysis for state of health estimation in lithium-ion batteries," Energy, Elsevier, vol. 304(C).
    3. Li, Yan & He, Zhaoxia & Ye, Min & Wang, Qiao & Lian, Gaoqi & Sun, Yiding & Wei, Meng, 2025. "A semi-supervised learning strategy for lithium-ion battery capacity estimation with limited impedance data," Energy, Elsevier, vol. 319(C).
    4. Wu, Jian & Meng, Jinhao & Lin, Mingqiang & Wang, Wei & Wu, Ji & Stroe, Daniel-Ioan, 2024. "Lithium-ion battery state of health estimation using a hybrid model with electrochemical impedance spectroscopy," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Ibraheem, Rasheed & Dechent, Philipp & dos Reis, Gonçalo, 2025. "Path signature-based life prognostics of Li-ion battery using pulse test data," Applied Energy, Elsevier, vol. 378(PA).
    6. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    8. Cai, Hongchang & Tang, Xiaopeng & Lai, Xin & Wang, Yanan & Han, Xuebing & Ouyang, Minggao & Zheng, Yuejiu, 2024. "How battery capacities are correctly estimated considering latent short-circuit faults," Applied Energy, Elsevier, vol. 375(C).
    9. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    10. Shengyu Tao & Ruifei Ma & Zixi Zhao & Guangyuan Ma & Lin Su & Heng Chang & Yuou Chen & Haizhou Liu & Zheng Liang & Tingwei Cao & Haocheng Ji & Zhiyuan Han & Minyan Lu & Huixiong Yang & Zongguo Wen & J, 2024. "Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Zhou, Yong & Dong, Guangzhong & Tan, Qianqian & Han, Xueyuan & Chen, Chunlin & Wei, Jingwen, 2023. "State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression," Energy, Elsevier, vol. 262(PB).
    13. Chang, Chun & Pan, Yaliang & Wang, Shaojin & Jiang, Jiuchun & Tian, Aina & Gao, Yang & Jiang, Yan & Wu, Tiezhou, 2024. "Fast EIS acquisition method based on SSA-DNN prediction model," Energy, Elsevier, vol. 288(C).
    14. Wang, Tong & Wu, Yan & Zhu, Keming & Cen, Jianmeng & Wang, Shaohong & Huang, Yuqi, 2025. "Deep learning and polarization equilibrium based state of health estimation for lithium-ion battery using partial charging data," Energy, Elsevier, vol. 317(C).
    15. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    16. Shengyu Tao & Haizhou Liu & Chongbo Sun & Haocheng Ji & Guanjun Ji & Zhiyuan Han & Runhua Gao & Jun Ma & Ruifei Ma & Yuou Chen & Shiyi Fu & Yu Wang & Yaojie Sun & Yu Rong & Xuan Zhang & Guangmin Zhou , 2023. "Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Hongao Liu & Chang Li & Xiaosong Hu & Jinwen Li & Kai Zhang & Yang Xie & Ranglei Wu & Ziyou Song, 2025. "Multi-modal framework for battery state of health evaluation using open-source electric vehicle data," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. Ming Zhang & Yanshuo Liu & Dezhi Li & Xiaoli Cui & Licheng Wang & Liwei Li & Kai Wang, 2023. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
    19. Zhongxian Sun & Weilin He & Junlei Wang & Xin He, 2024. "State of Health Estimation for Lithium-Ion Batteries with Deep Learning Approach and Direct Current Internal Resistance," Energies, MDPI, vol. 17(11), pages 1-14, May.
    20. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.