IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43883-y.html
   My bibliography  Save this article

Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning

Author

Listed:
  • Shengyu Tao

    (Tsinghua University)

  • Haizhou Liu

    (Tsinghua University)

  • Chongbo Sun

    (Tsinghua University)

  • Haocheng Ji

    (Tsinghua University)

  • Guanjun Ji

    (Tsinghua University)

  • Zhiyuan Han

    (Tsinghua University)

  • Runhua Gao

    (Tsinghua University)

  • Jun Ma

    (Tsinghua University)

  • Ruifei Ma

    (Tsinghua University)

  • Yuou Chen

    (Tsinghua University)

  • Shiyi Fu

    (Fudan University)

  • Yu Wang

    (Fudan University)

  • Yaojie Sun

    (Fudan University)

  • Yu Rong

    (Tencent AI Lab, Tencent)

  • Xuan Zhang

    (Tsinghua University)

  • Guangmin Zhou

    (Tsinghua University)

  • Hongbin Sun

    (Tsinghua University
    Tsinghua University
    Taiyuan University of Technology)

Abstract

Unsorted retired batteries with varied cathode materials hinder the adoption of direct recycling due to their cathode-specific nature. The surge in retired batteries necessitates precise sorting for effective direct recycling, but challenges arise from varying operational histories, diverse manufacturers, and data privacy concerns of recycling collaborators (data owners). Here we show, from a unique dataset of 130 lithium-ion batteries spanning 5 cathode materials and 7 manufacturers, a federated machine learning approach can classify these retired batteries without relying on past operational data, safeguarding the data privacy of recycling collaborators. By utilizing the features extracted from the end-of-life charge-discharge cycle, our model exhibits 1% and 3% cathode sorting errors under homogeneous and heterogeneous battery recycling settings respectively, attributed to our innovative Wasserstein-distance voting strategy. Economically, the proposed method underscores the value of precise battery sorting for a prosperous and sustainable recycling industry. This study heralds a new paradigm of using privacy-sensitive data from diverse sources, facilitating collaborative and privacy-respecting decision-making for distributed systems.

Suggested Citation

  • Shengyu Tao & Haizhou Liu & Chongbo Sun & Haocheng Ji & Guanjun Ji & Zhiyuan Han & Runhua Gao & Jun Ma & Ruifei Ma & Yuou Chen & Shiyi Fu & Yu Wang & Yaojie Sun & Yu Rong & Xuan Zhang & Guangmin Zhou , 2023. "Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43883-y
    DOI: 10.1038/s41467-023-43883-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43883-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43883-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Helin Yang & Kwok-Yan Lam & Liang Xiao & Zehui Xiong & Hao Hu & Dusit Niyato & H. Vincent Poor, 2022. "Lead federated neuromorphic learning for wireless edge artificial intelligence," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    3. Yunwei Zhang & Qiaochu Tang & Yao Zhang & Jiabin Wang & Ulrich Stimming & Alpha A. Lee, 2020. "Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    4. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    5. Guanjun Ji & Junxiong Wang & Zheng Liang & Kai Jia & Jun Ma & Zhaofeng Zhuang & Guangmin Zhou & Hui-Ming Cheng, 2023. "Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Junxiong Wang & Kai Jia & Jun Ma & Zheng Liang & Zhaofeng Zhuang & Yun Zhao & Baohua Li & Guangmin Zhou & Hui-Ming Cheng, 2023. "Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage," Nature Sustainability, Nature, vol. 6(7), pages 797-805, July.
    7. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    8. Chuhan Wu & Fangzhao Wu & Lingjuan Lyu & Tao Qi & Yongfeng Huang & Xing Xie, 2022. "A federated graph neural network framework for privacy-preserving personalization," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Sarthak Pati & Ujjwal Baid & Brandon Edwards & Micah Sheller & Shih-Han Wang & G. Anthony Reina & Patrick Foley & Alexey Gruzdev & Deepthi Karkada & Christos Davatzikos & Chiharu Sako & Satyam Ghodasa, 2022. "Federated learning enables big data for rare cancer boundary detection," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Peter M. Attia & Aditya Grover & Norman Jin & Kristen A. Severson & Todor M. Markov & Yang-Hung Liao & Michael H. Chen & Bryan Cheong & Nicholas Perkins & Zi Yang & Patrick K. Herring & Muratahan Ayko, 2020. "Closed-loop optimization of fast-charging protocols for batteries with machine learning," Nature, Nature, vol. 578(7795), pages 397-402, February.
    11. Yu, Haijun & Dai, Hongliang & Tian, Guangdong & Wu, Benben & Xie, Yinghao & Zhu, Ying & Zhang, Tongzhu & Fathollahi-Fard, Amir Mohammad & He, Qi & Tang, Hong, 2021. "Key technology and application analysis of quick coding for recovery of retired energy vehicle battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Helin Yang & Kwok-Yan Lam & Liang Xiao & Zehui Xiong & Hao Hu & Dusit Niyato & H. Vincent Poor, 2022. "Author Correction: Lead federated neuromorphic learning for wireless edge artificial intelligence," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    13. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. William E. Gent & Grace M. Busse & Kurt Z. House, 2022. "The predicted persistence of cobalt in lithium-ion batteries," Nature Energy, Nature, vol. 7(12), pages 1132-1143, December.
    15. Lai, Xin & Huang, Yunfeng & Deng, Cong & Gu, Huanghui & Han, Xuebing & Zheng, Yuejiu & Ouyang, Minggao, 2021. "Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Chengjian Xu & Paul Behrens & Paul Gasper & Kandler Smith & Mingming Hu & Arnold Tukker & Bernhard Steubing, 2023. "Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    6. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    8. Hsu, Chia-Wei & Xiong, Rui & Chen, Nan-Yow & Li, Ju & Tsou, Nien-Ti, 2022. "Deep neural network battery life and voltage prediction by using data of one cycle only," Applied Energy, Elsevier, vol. 306(PB).
    9. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    10. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
    11. Jun Ma & Junxiong Wang & Kai Jia & Zheng Liang & Guanjun Ji & Haocheng Ji & Yanfei Zhu & Wen Chen & Hui-Ming Cheng & Guangmin Zhou, 2024. "Subtractive transformation of cathode materials in spent Li-ion batteries to a low-cobalt 5 V-class cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Nagulapati, Vijay Mohan & Lee, Hyunjun & Jung, DaWoon & Brigljevic, Boris & Choi, Yunseok & Lim, Hankwon, 2021. "Capacity estimation of batteries: Influence of training dataset size and diversity on data driven prognostic models," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
    14. Xiangxi Lou & Penglei Yan & Binglei Jiao & Qingye Li & Panpan Xu & Lei Wang & Liang Zhang & Muhan Cao & Guiling Wang & Zheng Chen & Qiao Zhang & Jinxing Chen, 2024. "Grave-to-cradle photothermal upcycling of waste polyesters over spent LiCoO2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Lv, Haichao & Kang, Lixia & Liu, Yongzhong, 2023. "Analysis of strategies to maximize the cycle life of lithium-ion batteries based on aging trajectory prediction," Energy, Elsevier, vol. 275(C).
    16. Zhang, Ying & Li, Yan-Fu, 2022. "Prognostics and health management of Lithium-ion battery using deep learning methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Xue, Qiao & Li, Junqiu & Xu, Peipei, 2022. "Machine learning based swift online capacity prediction of lithium-ion battery through whole cycle life," Energy, Elsevier, vol. 261(PA).
    20. Che, Yunhong & Zheng, Yusheng & Forest, Florent Evariste & Sui, Xin & Hu, Xiaosong & Teodorescu, Remus, 2024. "Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43883-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.