IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924024875.html
   My bibliography  Save this article

Optimizing trading of electric vehicle charging flexibility in the continuous intraday market under user and market uncertainties

Author

Listed:
  • Chemudupaty, Raviteja
  • Hornek, Timothée
  • Pavić, Ivan
  • Potenciano Menci, Sergio

Abstract

The rise in electric vehicles (EVs) challenges energy suppliers with unpredictable charging behavior, making demand forecasts less accurate and increasing financial risks from power imbalances. In Europe, retailers can trade these imbalances in short-term markets like the continuous intraday (CID) market. By controlling EV charging times, suppliers can shift charging to periods with lower prices, potentially benefiting financially. However, the financial gains from trading this flexibility in the CID market remain uncertain due to EV user behavior and price fluctuations. In this study, we develop and test trading strategies designed to manage the power needs of a fleet of 1000 EVs across different segments of short-term electricity markets, focusing on the day-ahead (DA) auction, and the CID market. To address EV-use uncertainty, we take an initial EV charging flexibility forecast for the DA auction, and an updated forecast for the CID market. We find that trading in the CID market reduces the overall cost of making power purchases by capitalizing on the flexibilities of EV charging times. Our results suggest that energy suppliers trading in the CID market significantly reduce their financial risk, even when there are high margins of error in EV flexibility forecasts. In our scenario with the highest deviation between the DA and intraday (ID) flexibility metrics, applying the best CID strategies yielded an average yearly profit of €37.52 and €4,840.63 in 2019 and 2022 respectively. In comparison to the baseline strategy, which clears volumes as imbalances, the corresponding financial savings amounted to €1978.52 and €16,632.25, respectively.

Suggested Citation

  • Chemudupaty, Raviteja & Hornek, Timothée & Pavić, Ivan & Potenciano Menci, Sergio, 2025. "Optimizing trading of electric vehicle charging flexibility in the continuous intraday market under user and market uncertainties," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024875
    DOI: 10.1016/j.apenergy.2024.125103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narajewski, Michał & Ziel, Florian, 2020. "Econometric modelling and forecasting of intraday electricity prices," Journal of Commodity Markets, Elsevier, vol. 19(C).
    2. Gaete-Morales, Carlos & Kramer, Hendrik & Schill, Wolf-Peter, 2021. "An open tool for creating battery-electric vehicle time series from empirical data, emobpy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 8.
    3. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2015. "Value of flexible electric vehicles in providing spinning reserve services," Applied Energy, Elsevier, vol. 157(C), pages 60-74.
    4. Karsten Neuhoff & Nolan Ritter & Aymen SalahAbou-El-Enien & Philippe Vassilopoulos, 2016. "Intraday Markets for Power: Discretizing the Continuous Trading?," Working Papers EPRG 1609, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Mathias Müller & Florian Biedenbach & Janis Reinhard, 2020. "Development of an Integrated Simulation Model for Load and Mobility Profiles of Private Households," Energies, MDPI, vol. 13(15), pages 1-33, July.
    6. Wu, Jiechen & Hu, Junjie & Ai, Xin & Zhang, Zhan & Hu, Huanyu, 2019. "Multi-time scale energy management of electric vehicle model-based prosumers by using virtual battery model," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    8. Iversen, Emil B. & Morales, Juan M. & Madsen, Henrik, 2014. "Optimal charging of an electric vehicle using a Markov decision process," Applied Energy, Elsevier, vol. 123(C), pages 1-12.
    9. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    10. Pareschi, Giacomo & Küng, Lukas & Georges, Gil & Boulouchos, Konstantinos, 2020. "Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data," Applied Energy, Elsevier, vol. 275(C).
    11. Tepe, Benedikt & Figgener, Jan & Englberger, Stefan & Sauer, Dirk Uwe & Jossen, Andreas & Hesse, Holger, 2022. "Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets," Applied Energy, Elsevier, vol. 308(C).
    12. Yelena Vardanyan & Henrik Madsen, 2019. "Optimal Coordinated Bidding of a Profit Maximizing, Risk-Averse EV Aggregator in Three-Settlement Markets Under Uncertainty," Energies, MDPI, vol. 12(9), pages 1-19, May.
    13. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    14. Weiller, Claire, 2011. "Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States," Energy Policy, Elsevier, vol. 39(6), pages 3766-3778, June.
    15. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    16. Amela Ajanovic & Reinhard Haas, 2018. "Electric vehicles: solution or new problem?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 7-22, December.
    17. Rainer Baule & Michael Naumann, 2021. "Volatility and Dispersion of Hourly Electricity Contracts on the German Continuous Intraday Market," Energies, MDPI, vol. 14(22), pages 1-24, November.
    18. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    19. Leonardo Meeus, 2020. "The Evolution of Electricity Markets in Europe," Books, Edward Elgar Publishing, number 19187, March.
    20. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    21. Soumia Ayyadi & Mohamed Maaroufi, 2020. "Optimal Framework to Maximize the Workplace Charging Station Owner Profit while Compensating Electric Vehicles Users," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, May.
    22. Ilham Naharudinsyah & Steffen Limmer, 2018. "Optimal Charging of Electric Vehicles with Trading on the Intraday Electricity Market," Energies, MDPI, vol. 11(6), pages 1-12, June.
    23. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    2. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    3. Strobel, Leo & Schlund, Jonas & Pruckner, Marco, 2022. "Joint analysis of regional and national power system impacts of electric vehicles—A case study for Germany on the county level in 2030," Applied Energy, Elsevier, vol. 315(C).
    4. Albert Hiesl & Jasmine Ramsebner & Reinhard Haas, 2021. "Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria," Energies, MDPI, vol. 14(6), pages 1-19, March.
    5. Einolander, Johannes & Lahdelma, Risto, 2022. "Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure," Energy, Elsevier, vol. 256(C).
    6. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    7. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    8. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    9. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    10. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    11. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    12. Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty," Applied Energy, Elsevier, vol. 356(C).
    13. Muchun Wan & Heyang Yu & Yingning Huo & Kan Yu & Quanyuan Jiang & Guangchao Geng, 2024. "Feasibility and Challenges for Vehicle-to-Grid in Electricity Market: A Review," Energies, MDPI, vol. 17(3), pages 1-23, January.
    14. Wiedemann, Nina & Xin, Yanan & Medici, Vasco & Nespoli, Lorenzo & Suel, Esra & Raubal, Martin, 2024. "Vehicle-to-grid for car sharing - A simulation study for 2030," Applied Energy, Elsevier, vol. 372(C).
    15. Jiang, Qinhua & Zhang, Ning & Yueshuai He, Brian & Lee, Changju & Ma, Jiaqi, 2024. "Large-scale public charging demand prediction with a scenario- and activity-based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    16. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    17. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2017. "Electricity costs for a Level 3 electric vehicle fueling station integrated with a building," Applied Energy, Elsevier, vol. 191(C), pages 367-384.
    18. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    19. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    20. Raymond Kene & Thomas Olwal & Barend J. van Wyk, 2021. "Sustainable Electric Vehicle Transportation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.