IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924023808.html
   My bibliography  Save this article

Thermo-economic analysis of green hydrogen production onboard LNG carriers through solid oxide electrolysis powered by organic Rankine cycles

Author

Listed:
  • Elrhoul, Doha
  • Naveiro, Manuel
  • Gómez, Manuel Romero
  • Adams, Thomas A.

Abstract

LNG carriers play a crucial role in the shipping industry meeting the global demand for natural gas (NG). However, the energy losses resulting from the propulsion system and the excess boil-off gas (BOG) cannot be overlooked. The present article investigates the H2 production on board LNG carriers employing both the engine's waste heat (WH) and the excess BOG. Conventional (ORC) and dual-pressure (2P-ORC) organic Rankine cycles coupled separately with a solid oxide electrolysis (SOEC) have been simulated and compared. The hydrogen (H2) produced is then compressed at 150 bar for subsequent use as required. According to the results, the 2P-ORC generates 14.79 % more power compared to ORC, allowing for an increased energy supply to the SOEC; hence, producing more H2 (34.47 kg/h compared to 31.14 kg/h). Including the 2P-ORC in the H2 production plant results in a cheaper H2 cost by 0.04 $/kgH2 compared to ORC, a 1.13 %LHV higher system efficiency when leveraging all the available waste heat. The plant including 2P-ORC exploits more than 86 % of the of the available waste compared to 70 % when using ORC. Excluding the compression system decreases the capital cost by almost the half regardless of the WH recovery system used, yet it plays in favour of the plant with ORC making the cost of H2 cheaper by 0.29 $/kgH2 in this case. Onboard H2 production is a versatile process independent from the propulsion system ensuring the ship's safety and availability throughout a sea journey.

Suggested Citation

  • Elrhoul, Doha & Naveiro, Manuel & Gómez, Manuel Romero & Adams, Thomas A., 2025. "Thermo-economic analysis of green hydrogen production onboard LNG carriers through solid oxide electrolysis powered by organic Rankine cycles," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023808
    DOI: 10.1016/j.apenergy.2024.124996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maxwell, Don & Zhu, Zhen, 2011. "Natural gas prices, LNG transport costs, and the dynamics of LNG imports," Energy Economics, Elsevier, vol. 33(2), pages 217-226, March.
    2. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    3. Aguilera, Roberto F. & Aguilera, Roberto, 2012. "World natural gas endowment as a bridge towards zero carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 79(3), pages 579-586.
    4. Burel, Fabio & Taccani, Rodolfo & Zuliani, Nicola, 2013. "Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion," Energy, Elsevier, vol. 57(C), pages 412-420.
    5. Larsen, Ulrik & Sigthorsson, Oskar & Haglind, Fredrik, 2014. "A comparison of advanced heat recovery power cycles in a combined cycle for large ships," Energy, Elsevier, vol. 74(C), pages 260-268.
    6. Miana, Mario & Hoyo, Rafael del & Rodrigálvarez, Vega & Valdés, José Ramón & Llorens, Raúl, 2010. "Calculation models for prediction of Liquefied Natural Gas (LNG) ageing during ship transportation," Applied Energy, Elsevier, vol. 87(5), pages 1687-1700, May.
    7. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Hyun Cho, Jae & Lim, Wonsub & Moon, Il, 2011. "Current status and future projections of LNG demand and supplies: A global prospective," Energy Policy, Elsevier, vol. 39(7), pages 4097-4104, July.
    8. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    9. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    11. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & García-Martínez, M.J., 2010. "Boil off gas (BOG) management in Spanish liquid natural gas (LNG) terminals," Applied Energy, Elsevier, vol. 87(11), pages 3384-3392, November.
    12. Luo, Yu & Wu, Xiao-yu & Shi, Yixiang & Ghoniem, Ahmed F. & Cai, Ningsheng, 2018. "Exergy analysis of an integrated solid oxide electrolysis cell-methanation reactor for renewable energy storage," Applied Energy, Elsevier, vol. 215(C), pages 371-383.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    2. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    6. Romero Gómez, Manuel & Romero Gómez, Javier & López-González, Luis M. & López-Ochoa, Luis M., 2016. "Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture," Energy, Elsevier, vol. 105(C), pages 32-44.
    7. Mohd Shariq Khan & Muhammad Abdul Qyyum & Wahid Ali & Aref Wazwaz & Khursheed B. Ansari & Moonyong Lee, 2020. "Energy Saving through Efficient BOG Prediction and Impact of Static Boil-off-Rate in Full Containment-Type LNG Storage Tank," Energies, MDPI, vol. 13(21), pages 1-14, October.
    8. Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
    9. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    11. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    12. Bahram Ghorbani & Sohrab Zendehboudi & Noori M. Cata Saady, 2025. "Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization," Energies, MDPI, vol. 18(6), pages 1-87, March.
    13. Tang, Yujun & Feng, Jinfeng & Wang, Dawei & Zhu, Sipeng & Bai, Shuzhan & Li, Guoxiang, 2024. "Multi-mode operation of a novel dual-pressure steam rankine cycle system recovering multi-grade waste heat from a marine two-stroke engine equipped with the high-pressure exhaust gas recirculation sys," Energy, Elsevier, vol. 301(C).
    14. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    15. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    16. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Ahmed, Shoaib & Li, Tie & Zhou, Xin Yi & Yi, Ping & Chen, Run, 2025. "Quantifying the environmental footprints of biofuels for sustainable passenger ship operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    18. Jang, Hayoung & Jeong, Byongug & Zhou, Peilin & Ha, Seungman & Nam, Dong, 2021. "Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel," Applied Energy, Elsevier, vol. 292(C).
    19. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    20. Duan, Zhongdi & Zhu, Yifeng & Wang, Chenbiao & Yuan, Yuchao & Xue, Hongxiang & Tang, Wenyong, 2023. "Numerical and theoretical prediction of the thermodynamic response in marine LNG fuel tanks under sloshing conditions," Energy, Elsevier, vol. 270(C).

    More about this item

    Keywords

    SOEC; ORC; 2P-ORC; BOG; WHR; ICE;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.