IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021899.html
   My bibliography  Save this article

Thermodynamic analysis of a novel SOFC-based CCHP system integrated supercritical carbon dioxide and organic Rankine cycles for waste heat cascade utilization

Author

Listed:
  • Zheng, Nan
  • Zhang, Qiang
  • Ren, Yunxiu
  • Duan, Liqiang
  • Wang, Qiushi
  • Ding, Xingqi
  • Zhou, Yufei
  • Wang, Xiaomeng
  • Liu, Luyao
  • Sun, Mingjia
  • Jiao, Weijia

Abstract

To address the challenges of inefficient flue gas waste heat utilization and inflexible seasonal energy adjustments in conventional combined cooling, heating, and power systems, a novel solid oxide fuel cell-based polygeneration system is proposed by implementing a deep cascade of waste heat utilization. High-temperature flue gas from the solid oxide fuel cell-gas turbine unit drives a supercritical CO2 cycle to maximize energy extraction, while a thermoelectric generator replaces the traditional condenser to harvest low-grade waste heat energy. Middle-temperature waste heat is then split between an organic Rankine cycle and an absorption chiller/heat pump arranged in parallel, enabling seamless transitions among summer cooling, transitional hybrid, and winter heating modes to meet seasonal load variations. Finally, the low-temperature waste heat is utilized for domestic hot water production. Additionally, three operation schemes are designed to adaptively meet seasonal demands and optimize energy output year-round. Energy efficiencies of 80.74 %, 78.18 %, and 87.70 % and exergy efficiencies of 59.94 %, 60.58 %, and 60.87 % are achieved in summer, transition, and winter modes, respectively. The supercritical CO2 cycle and solid oxide fuel cell reach efficiencies of 28.58 % and 46.88 %, with the fuel cell contributing 24.59 % of total exergy losses. Parametric studies show that increasing solid oxide fuel cell pressure, temperature, and fuel utilization improves output, while a higher steam-to-carbon ratio reduces performance. The proposed system's cascaded waste heat recovery and parallel subsystem coordination significantly enhance flexibility and efficiency over traditional combined cooling, heating, and power systems. Future work will explore comprehensive techno-economic and environmental evaluation, renewable energy integration, and artificial intelligence-driven operational optimization to support real-world deployment and scalability.

Suggested Citation

  • Zheng, Nan & Zhang, Qiang & Ren, Yunxiu & Duan, Liqiang & Wang, Qiushi & Ding, Xingqi & Zhou, Yufei & Wang, Xiaomeng & Liu, Luyao & Sun, Mingjia & Jiao, Weijia, 2025. "Thermodynamic analysis of a novel SOFC-based CCHP system integrated supercritical carbon dioxide and organic Rankine cycles for waste heat cascade utilization," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021899
    DOI: 10.1016/j.energy.2025.136547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lan, Yuncheng & Lu, Junhui & Mu, Lianbo & Wang, Suilin & Zhai, Huixing, 2023. "Waste heat recovery from exhausted gas of a proton exchange membrane fuel cell to produce hydrogen using thermoelectric generator," Applied Energy, Elsevier, vol. 334(C).
    2. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    3. Liu, Luyao & Duan, Liqiang & Zheng, Nan & Wang, Qiushi & Zhang, Maotong & Xue, Dong, 2024. "Thermodynamic performance evaluation of a novel solar-assisted multi-generation system driven by ammonia-fueled SOFC with anode outlet gas recirculation," Energy, Elsevier, vol. 294(C).
    4. Caliskan, Hakan, 2017. "Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 488-492.
    5. Wang, Qiushi & Duan, Liqiang & Zheng, Nan & Lu, Ziyi, 2023. "4E Analysis of a novel combined cooling, heating and power system coupled with solar thermochemical process and energy storage," Energy, Elsevier, vol. 275(C).
    6. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    7. Elrhoul, Doha & Naveiro, Manuel & Gómez, Manuel Romero & Adams, Thomas A., 2025. "Thermo-economic analysis of green hydrogen production onboard LNG carriers through solid oxide electrolysis powered by organic Rankine cycles," Applied Energy, Elsevier, vol. 380(C).
    8. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    9. Khouya, Ahmed, 2022. "Performance analysis and optimization of a trilateral organic Rankine powered by a concentrated photovoltaic thermal system," Energy, Elsevier, vol. 247(C).
    10. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    11. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    12. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Wang, Qiushi & Liu, Luyao, 2023. "Multi-criteria performance analysis and optimization of a solar-driven CCHP system based on PEMWE, SOFC, TES, and novel PVT for hotel and office buildings," Renewable Energy, Elsevier, vol. 206(C), pages 1249-1264.
    13. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Liu, Luyao, 2022. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of a novel partially covered parabolic trough photovoltaic thermal collector based on life cycle method," Renewable Energy, Elsevier, vol. 200(C), pages 1573-1588.
    14. Zheng, Nan & Wang, Qiushi & Ding, Xingqi & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Zhou, Yufei & Sun, Mingjia & Desideri, Umberto, 2024. "Techno-economic analysis of a novel solar-based polygeneration system integrated with vanadium redox flow battery and thermal energy storage considering robust source-load response," Applied Energy, Elsevier, vol. 376(PB).
    15. Ma, Zherui & Wang, Jiangjiang & Dong, Fuxiang & Han, Zepeng & Tian, Lei & Yan, Rujing & Liang, Zhanwei, 2022. "Thermodynamic analysis of fuel-cell-based combined cooling, heating, and power system integrated solar energy and chemical looping hydrogen generation," Energy, Elsevier, vol. 238(PC).
    16. Duan, Liqiang & Huang, Kexin & Zhang, Xiaoyuan & Yang, Yongping, 2013. "Comparison study on different SOFC hybrid systems with zero-CO2 emission," Energy, Elsevier, vol. 58(C), pages 66-77.
    17. Yang, Xiaoyu & Zhao, Hongbin, 2019. "Thermodynamic performance study of the SOFC-STIG distributed energy system fueled by LNG with CO2 recovery," Energy, Elsevier, vol. 186(C).
    18. Owebor, K. & Diemuodeke, E.O. & Briggs, T.A., 2022. "Thermo-economic and environmental analysis of integrated power plant with carbon capture and storage technology," Energy, Elsevier, vol. 240(C).
    19. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Wang, Qiushi & Liu, Luyao, 2023. "Multi-criteria performance analysis and optimization of a solar-driven CCHP system based on PEMWE, SOFC, TES, and novel PVT for hotel and office buildings," Renewable Energy, Elsevier, vol. 206(C), pages 1249-1264.
    2. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    3. Wang, Xiaomeng & Duan, Liqiang & Zheng, Nan, 2024. "Thermodynamic and economic analysis of a new CCHP system with active solar energy storage and decoupling of power and cooling outputs," Energy, Elsevier, vol. 307(C).
    4. You, Huailiang & Zhou, Xianqi & Chen, Daifen & Xiao, Yan & Hu, Bin & Li, Guoxiang & Han, Jitian & Lysyakov, Anatoly, 2025. "Techno-economic assessment of a novel combined cooling, heating, and power (CCHP) system driven by solid oxide fuel cell and solar thermal utilization," Renewable Energy, Elsevier, vol. 240(C).
    5. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).
    6. Zheng, Nan & Wang, Qiushi & Ding, Xingqi & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Zhou, Yufei & Sun, Mingjia & Desideri, Umberto, 2024. "Techno-economic analysis of a novel solar-based polygeneration system integrated with vanadium redox flow battery and thermal energy storage considering robust source-load response," Applied Energy, Elsevier, vol. 376(PB).
    7. Zheng, Nan & Wang, Qiushi & Ding, Xingqi & Wang, Xiaomeng & Zhang, Hanfei & Duan, Liqiang & Desideri, Umberto, 2025. "Proactive energy storage operation strategy and optimization of a solar polystorage and polygeneration system based on day-ahead load forecasting," Applied Energy, Elsevier, vol. 381(C).
    8. Liu, Luyao & Duan, Liqiang & Zheng, Nan & Wang, Qiushi & Zhang, Maotong & Xue, Dong, 2024. "Thermodynamic performance evaluation of a novel solar-assisted multi-generation system driven by ammonia-fueled SOFC with anode outlet gas recirculation," Energy, Elsevier, vol. 294(C).
    9. Alirahmi, Seyed Mojtaba & Behzadi, Amirmohammad & Ahmadi, Pouria & Sadrizadeh, Sasan, 2023. "An innovative four-objective dragonfly-inspired optimization algorithm for an efficient, green, and cost-effective waste heat recovery from SOFC," Energy, Elsevier, vol. 263(PA).
    10. Xie, Junen & Yan, Peigang & Liu, Yang & Liu, Zekuan & Xiu, Xinyan & Xu, Shiyi & Fang, Jiwei & Li, Chengjie & Qin, Jiang, 2024. "Analysis of the thermodynamic performance of the SOFC-GT system integrated solar energy based on reverse Brayton cycle," Energy, Elsevier, vol. 308(C).
    11. Li, Manfeng & Yang, Juncheng & Mehrpooya, Mehdi & Guo, Zhanjun & He, Tianbiao, 2025. "Off-grid green hydrogen production and liquefaction system driven by renewable energy and LNG cold energy: A comprehensive 4E analysis and optimization," Applied Energy, Elsevier, vol. 392(C).
    12. Obara, Shin'ya, 2023. "Economic performance of an SOFC combined system with green hydrogen methanation of stored CO2," Energy, Elsevier, vol. 262(PA).
    13. Paniz Arashrad & Shayan Sharafi Laleh & Shayan Rabet & Mortaza Yari & Saeed Soltani & Marc A. Rosen, 2025. "Real-Time Modeling of a Solar-Driven Power Plant with Green Hydrogen, Electricity, and Fresh Water Production: Techno-Economics and Optimization," Sustainability, MDPI, vol. 17(8), pages 1-29, April.
    14. Zheng, Shanshan & Wu, Zhimin & Zhou, Xiao, 2025. "Economic and environmental analysis of a new sustainable multi-generation system for power, heating, cooling, freshwater, and hydrogen production," Energy, Elsevier, vol. 328(C).
    15. Wen, Xin & Ji, Jie & Li, Zhaomeng & Yao, Tingting, 2023. "Proposing of a novel PV/T module in series with a ST+TE module to pursue a round-the-clock continuous energy output," Energy, Elsevier, vol. 285(C).
    16. Yin, Boyi & Zhu, Wenjiang & Tang, Cheng & Wang, Can & Xu, Xinhai, 2025. "Hierarchical optimal scheduling of IES considering SOFC degradation, internal and external uncertainties," Applied Energy, Elsevier, vol. 381(C).
    17. Mortadi, M. & El Fadar, A. & Achkari Begdouri, O., 2024. "4E analysis of photovoltaic thermal collector-based tri-generation system with adsorption cooling: Annual simulation under Moroccan climate conditions," Renewable Energy, Elsevier, vol. 221(C).
    18. Khojaste Effatpanah, Saeed & Rahbari, Hamid Reza & Ahmadi, Mohammad H. & Farzaneh, Ali, 2023. "Green hydrogen production and utilization in a novel SOFC/GT-based zero-carbon cogeneration system: A thermodynamic evaluation," Renewable Energy, Elsevier, vol. 219(P2).
    19. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
    20. Wang, Qiushi & Duan, Liqiang & Huang, Shangyou & Li, Xinlu & Liu, Luyao & Wang, Chu & Ding, Xingqi & Zheng, Nan & Jiao, Weijia, 2025. "Conventional and advanced exergy analysis of a novel SOFC-MGT hybrid power system coupled with external solar methane hydrogen production process," Renewable Energy, Elsevier, vol. 246(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.