IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924023547.html
   My bibliography  Save this article

Robust preventive and corrective security-constrained OPF for worst contingencies with the adoption of VPP: A safe reinforcement learning approach

Author

Listed:
  • Wei, Xiang
  • Chan, Ka Wing
  • Wang, Guibin
  • Hu, Ze
  • Zhu, Ziqing
  • Zhang, Xian

Abstract

The rising frequency of extreme weather events calls for urgent measures to improve the resilience and reliability of power systems. This paper, therefore, presents a robust preventive-corrective security-constrained optimal power flow (PCSCOPF) model designed to strengthen power system reliability during N-k outages. The model integrates fast-response virtual power plants (VPPs), dynamically adjusting their injections to mitigate post-contingency overloads and maintain branch flows within emergency limits. Additionally, a novel approach combining deep reinforcement learning (DRL) with Lagrangian relaxation is introduced to efficiently solve the PCSCOPF decision-making problem. By framing the problem as a constrained Markov decision process (CMDP), the proposed Lagrangian-based soft actor-critic (L-SAC) algorithm optimizes control actions while ensuring constraint satisfaction during the exploration process. Extensive investigations have been conducted on the IEEE 30-bus and 118-bus systems to evaluate their computational efficiency and reliability.

Suggested Citation

  • Wei, Xiang & Chan, Ka Wing & Wang, Guibin & Hu, Ze & Zhu, Ziqing & Zhang, Xian, 2025. "Robust preventive and corrective security-constrained OPF for worst contingencies with the adoption of VPP: A safe reinforcement learning approach," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023547
    DOI: 10.1016/j.apenergy.2024.124970
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Scalable multi-agent reinforcement learning for distributed control of residential energy flexibility," Applied Energy, Elsevier, vol. 314(C).
    2. Kou, Peng & Liang, Deliang & Wang, Chen & Wu, Zihao & Gao, Lin, 2020. "Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks," Applied Energy, Elsevier, vol. 264(C).
    3. Mohseni-Bonab, Seyed Masoud & Kamwa, Innocent & Rabiee, Abbas & Chung, C.Y., 2022. "Stochastic optimal transmission Switching: A novel approach to enhance power grid security margins through vulnerability mitigation under renewables uncertainties," Applied Energy, Elsevier, vol. 305(C).
    4. Xie, Shiwei & Zheng, Jieyun & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "Urban multi-energy network optimization: An enhanced model using a two-stage bound-tightening approach," Applied Energy, Elsevier, vol. 277(C).
    5. Li, Qiang & Zhou, Yongcheng & Wei, Fanchao & Li, Shuangxiu & Wang, Zhonghao & Li, Jiajia & Zhou, Guowen & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2024. "Multi-time scale scheduling for virtual power plants: Integrating the flexibility of power generation and multi-user loads while considering the capacity degradation of energy storage systems," Applied Energy, Elsevier, vol. 362(C).
    6. Neumann, Fabian & Hagenmeyer, Veit & Brown, Tom, 2022. "Assessments of linear power flow and transmission loss approximations in coordinated capacity expansion problems," Applied Energy, Elsevier, vol. 314(C).
    7. Ochoa, Tomás & Gil, Esteban & Angulo, Alejandro & Valle, Carlos, 2022. "Multi-agent deep reinforcement learning for efficient multi-timescale bidding of a hybrid power plant in day-ahead and real-time markets," Applied Energy, Elsevier, vol. 317(C).
    8. Hui, Hongxun & Chen, Yulin & Yang, Shaohua & Zhang, Hongcai & Jiang, Tao, 2022. "Coordination control of distributed generators and load resources for frequency restoration in isolated urban microgrids," Applied Energy, Elsevier, vol. 327(C).
    9. Fang, Xin & Hodge, Bri-Mathias & Jiang, Huaiguang & Zhang, Yingchen, 2019. "Decentralized wind uncertainty management: Alternating direction method of multipliers based distributionally-robust chance constrained optimal power flow," Applied Energy, Elsevier, vol. 239(C), pages 938-947.
    10. Liu, Jizhe & Zhang, Yuchen & Meng, Ke & Dong, Zhao Yang & Xu, Yan & Han, Siming, 2022. "Real-time emergency load shedding for power system transient stability control: A risk-averse deep learning method," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yadong & Karve, Pranav M. & Mahadevan, Sankaran, 2025. "Graph neural networks for power grid operational risk assessment under evolving unit commitment," Applied Energy, Elsevier, vol. 380(C).
    2. Zhou, Yu & Li, Zhengshuo & Wang, Guangrui, 2021. "Study on leveraging wind farms' robust reactive power range for uncertain power system reactive power optimization," Applied Energy, Elsevier, vol. 298(C).
    3. Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
    4. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    5. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    6. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    7. Zhang, Yiwen & Lin, Rui & Mei, Zhen & Lyu, Minghao & Jiang, Huaiguang & Xue, Ying & Zhang, Jun & Gao, David Wenzhong, 2024. "Interior-point policy optimization based multi-agent deep reinforcement learning method for secure home energy management under various uncertainties," Applied Energy, Elsevier, vol. 376(PA).
    8. He, Wangli & Li, Chengyuan & Cai, Chenhao & Qing, Xiangyun & Du, Wenli, 2024. "Suppressing active power fluctuations at PCC in grid-connection microgrids via multiple BESSs: A collaborative multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 373(C).
    9. Jude Suchithra & Amin Rajabi & Duane A. Robinson, 2024. "Enhancing PV Hosting Capacity of Electricity Distribution Networks Using Deep Reinforcement Learning-Based Coordinated Voltage Control," Energies, MDPI, vol. 17(20), pages 1-27, October.
    10. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    11. Shuo Yin & Yang He & Zhiheng Li & Senmao Li & Peng Wang & Ziyi Chen, 2024. "A Novel Multi-Timescale Optimal Scheduling Model for a Power–Gas Mutual Transformation Virtual Power Plant with Power-to-Gas Conversion and Comprehensive Demand Response," Energies, MDPI, vol. 17(15), pages 1-19, August.
    12. Zhu, Dafeng & Yang, Bo & Liu, Yuxiang & Wang, Zhaojian & Ma, Kai & Guan, Xinping, 2022. "Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park," Applied Energy, Elsevier, vol. 311(C).
    13. Wang, Can & Wang, Zhen & Chu, Sihu & Ma, Hui & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2024. "A two-stage underfrequency load shedding strategy for microgrid groups considering risk avoidance," Applied Energy, Elsevier, vol. 367(C).
    14. Zhang, Yachao & Xie, Shiwei & Shu, Shengwen, 2022. "Multi-stage robust optimization of a multi-energy coupled system considering multiple uncertainties," Energy, Elsevier, vol. 238(PC).
    15. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    16. Kakkar, Riya & Agrawal, Smita & Tanwar, Sudeep, 2024. "A systematic survey on demand response management schemes for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    17. Se-Heon Lim & Sung-Guk Yoon, 2022. "Dynamic DNR and Solar PV Smart Inverter Control Scheme Using Heterogeneous Multi-Agent Deep Reinforcement Learning," Energies, MDPI, vol. 15(23), pages 1-18, December.
    18. Chen, Changming & Wu, Xueyan & Li, Yan & Zhu, Xiaojun & Li, Zesen & Ma, Jien & Qiu, Weiqiang & Liu, Chang & Lin, Zhenzhi & Yang, Li & Wang, Qin & Ding, Yi, 2021. "Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages," Applied Energy, Elsevier, vol. 302(C).
    19. Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2021. "Double-layer stochastic model predictive voltage control in active distribution networks with high penetration of renewables," Applied Energy, Elsevier, vol. 302(C).
    20. Lin, Chengrong & Hu, Bo & Tai, Heng-Ming & Shao, Changzheng & Xie, Kaigui & Wang, Yu, 2024. "Performance optimization of VPP in fast frequency control ancillary service provision," Applied Energy, Elsevier, vol. 376(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.