IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925007238.html
   My bibliography  Save this article

A scalable demand-side energy management control strategy for large residential districts based on an attention-driven multi-agent DRL approach

Author

Listed:
  • Savino, Sabrina
  • Minella, Tommaso
  • Nagy, Zoltán
  • Capozzoli, Alfonso

Abstract

The growing penetration of renewable energy sources holds great potential for decarbonizing the building energy sector. However, the intermittent and unpredictable nature of renewable generation poses significant challenges to grid stability and energy integration. Demand-side management (DSM) has emerged as a promising solution, leveraging demand flexibility to align energy consumption with periods of peak renewable generation and mitigate grid instability. To fully harness this flexibility, energy coordination across multiple buildings is essential, enabling participation in flexibility markets and optimizing energy management at district level. This paper introduces attention-actor-critic multi-agent deep reinforcement learning (AAC-MADRL), an actor-critic algorithm built upon the centralized training with decentralized execution (CTDE) framework, enhanced with attention mechanisms with the aim of enabling scalable, coordinated, and autonomous DSM in residential districts. A parameterized reward structure allows systematic testing under different cooperation scenarios – fully cooperative, competitive, and mixed – highlighting the conditions where AAC-MADRL outperforms other deep reinforcement learning (DRL) approaches, including decentralized and non-attention-based cooperative methods. Evaluated through winter and summer scenarios in districts across Alameda County, California (73 buildings) and Texas County (100 buildings) using the CityLearn platform, AAC-MADRL demonstrates substantial improvements. AAC-MADRL achieves energy cost reductions of up to 18 % in Texas and 12.5 % in California compared to the rule-based controller. Additionally, it improves self-sufficiency by 6 %–10.5 % during periods of limited solar generation and significantly reduces peak demand. The algorithm also exhibited superior computational efficiency, with deployment times 40.5 % faster than decentralized DRL and 62.5 % faster than cooperative non-attention-based DRL approaches on average.

Suggested Citation

  • Savino, Sabrina & Minella, Tommaso & Nagy, Zoltán & Capozzoli, Alfonso, 2025. "A scalable demand-side energy management control strategy for large residential districts based on an attention-driven multi-agent DRL approach," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007238
    DOI: 10.1016/j.apenergy.2025.125993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.